991 resultados para Cellular telephony


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction of immunity against antigens expressed on tumor cells might prevent or delay recurrence of the disease. Six patients operated on for colorectal carcinoma were immunized with human monoclonal anti-idiotypic antibodies (h-Ab2) against the mouse 17-1A anti-colon carcinoma antibody, mimicking a nominal antigen (GA733-2). All patients developed a long-lasting T-cell immunity against the extracellular domain of GA733-2 (GA733-2E) (produced in a baculovirus system) and h-Ab2. This was shown in vitro by specific cell proliferation (DNA-synthesis) assay as well as by interleukin 2 and interferon gamma production and in vivo by the delayed-type hypersensitivity reaction. Five patients mounted a specific humoral response (IgG) against the tumor antigen GA733-2E (ELISA) and tumor cells expressing GA733-2. Epitope mapping using 23 overlapping peptides of GA733-2E revealed that the B-cell epitope was localized close to the N terminus of GA733-2. Binding of the antibodies to the tumor antigen and to one 18-aa peptide was inhibited by h-Ab2, indicating that the antibodies were able to bind to the antigen as well as to h-Ab2. The results suggest that our h-Ab2 might be able to induce an anti-tumor immunity which may control the growth of tumor cells in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation of the P proteins of nonsegmented negative-strand RNA viruses is critical for their function as transactivators of the viral RNA polymerases. Using unphosphorylated P protein of human parainfluenza virus type 3 (HPIV3) expressed in Escherichia coli, we have shown that the cellular protein kinase that phosphorylates P in vitro is biochemically and immunologically indistinguishable from cellular protein kinase C isoform zeta (PKC-zeta). Further, PKC-zeta is specifically packaged within the progeny HPIV3 virions and remains tightly associated with the ribonucleoprotein complex. The P protein seems also to be phosphorylated intracellularly by PKC-zeta, as shown by the similar protease digestion pattern of the in vitro and in vivo phosphorylated P proteins. The growth of HPIV3 in CV-1 cells is completely abrogated when a PKC-zeta-specific inhibitor pseudosubstrate peptide was delivered into cells. These data indicate that PKC-zeta plays an important role in HPIV3 gene expression by phosphorylating P protein, thus providing an opportunity to develop antiviral agents against an important human pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-voltage-activated calcium channels are hetero-oligomeric protein complexes that mediate multiple cellular processes, including the influx of extracellular Ca2+, neurotransmitter release, gene transcription, and synaptic plasticity. These channels consist of a primary α1 pore-forming subunit, which is associated with an extracellular α2δ subunit and an intracellular β auxiliary subunit, which alter the gating properties and trafficking of the calcium channel. The cellular localization of the α2δ3 subunit in the mouse and rat retina is unknown. In this study using RT-PCR, a single band at ∼305 bp corresponding to the predicted size of the α2δ3 subunit fragment was found in mouse and rat retina and brain homogenates. Western blotting of rodent retina and brain homogenates showed a single 123-kDa band. Immunohistochemistry with an affinity-purified antibody to the α2δ3 subunit revealed immunoreactive cell bodies in the ganglion cell layer and inner nuclear layer and immunoreactive processes in the inner plexiform layer and the outer plexiform layer. α2δ3 immunoreactivity was localized to multiple cell types, including ganglion, amacrine, and bipolar cells and photoreceptors, but not horizontal cells. The expression of the α2δ3 calcium channel subunit to multiple cell types suggests that this subunit participates widely in Ca-channel-mediated signaling in the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

tRNAs are charged with cognate amino acids by aminoacyl-tRNA synthetases (aaRSs) and subsequently delivered to the ribosome to be used as substrates for gene translation. Whether aminoacyl-tRNAs are channeled to the ribosome by transit within translational complexes that avoid their diffusion in the cytoplasm is a matter of intense investigation in organisms of the three domains of life. In the cyanobacterium Anabaena sp. PCC 7120, the valyl-tRNA synthetase (ValRS) is anchored to thylakoid membranes by means of the CAAD domain. We have investigated whether in this organism ValRS could act as a hub for the nucleation of a translational complex by attracting other aaRSs to the membranes. Out of the 20 aaRSs, only ValRS was found to localize in thylakoid membranes whereas the other enzymes occupied the soluble portion of the cytoplasm. To investigate the basis for this asymmetric distribution of aaRSs, a global search for proteins interacting with the 20 aaRSs was conducted. The interaction between ValRS and the FoF1 ATP synthase complex here reported is of utmost interest and suggests a functional link between elements of the gene translation and energy production machineries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as good thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering material insulation inside the cavities. The time-temperature history and the residual cross-section of wooden slabs were numerically measured and analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wooden cellular slabs are lightweight structures, easy to assemble, and with excellent architectural features, as thermal and acoustic conditions. The wooden cellular slabs with perforations are typical and very common engineering solutions, used in the ceiling or flooring plates to improve the acoustic absorption of compartments, and also have a good insulation and relevant architectonic characteristics. However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behavior with accurately. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behavior of the wooden slabs will be compared considering material insulation inside the cavities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materials like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood burns quite easily and produces a great deal of heat energy. The main disadvantage is the high level of combustion when exposed to fire, where the point at which it catches fire is from 200–400°C. After fire exposure, is need to determine if the charred wooden structures are safe for future use. Design methods require the use of computer modelling to predict the fire exposure and the capacity of structures to resist those action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood structures exposed to fire, because predicts the charring rate as a function of fire exposure. The charring rate calculation of most structural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materials. In this work, the authors present different case studies using numerical models, that will help professionals analysing woods elements and the type of information needed to decide whether the charred structures are adequate or not to use. Different thermal models representing wooden cellular slabs, used in building construction for ceiling or flooring compartments, will be analysed and submitted to different fire scenarios (with the standard fire curve exposure). The same numerical models, considering insulation material inside the wooden cellular slabs, will be tested to compare and determine the fire time resistance and the charring rate calculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a natural and traditional building material, as popular today as ever, and presents advantages. Physically, wood is strong and stiff, but compared with other materiais like steel is light and flexible. Wood material can absorb sound very effectively and it is a relatively good heat insulator. But dry wood does bum quite easily md produces a great deal ofheat energy. The main disadvantage is the high levei ofcombustion when exposed to fíre, where the point at which it catches fire is fi-om 200-400°C. After fu-e exposure, is need to determine if the charred wooden stmctures are safe for future use. Design methods require the use ofcomputer modelling to predict the fíre exposure and the capacity ofstructures to resist fhose action. Also, large or small scale experimental tests are necessary to calibrate and verify the numerical models. The thermal model is essential for wood stmctures exposed to fire, because predicts the charring rate as a fünction offire exposure. The charring rate calculation ofmost stmctural wood elements allows simple calculations, but is more complicated for situations where the fire exposure is non-standard and in wood elements protected with other materiais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical approach with finite element method in order to predict both the behaviour and the performance of the wooden slabs with rectangular perforations under fire exposure. These typical constructions have good sound absorption, thermal insulation and relevant architectonic features, they are used in many civil engineering applications. These slabs are normally installed at lower level in building constructions essentially due to an easy maintenance requisite. Depending on the installation requirement, the perforated wooden slabs could have an additional insulation material inside the cavities. The proposed numerical model could be applied to different design constructive slab solutions. For this purpose a 3D numerical simulation was conducted with particular attention to the wood thermal properties variation with temperature. The numerical results were compared with those obtained experimentally in laboratory, for two wooden slabs. The fire resistance (performance criteria related to the insulation (I) and integrity (E)) was evaluated, as well as the effect of rectangular perforations into the residual cross section of the slab. This study was conducted in accordance with European Standard EN 1365-2 and using a fire resistance furnace which complies the requirements of EN 1363-1 in the experimental test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human cytomegalovirus developed distinct evasion mechanisms from the cellular antiviral response involving vMIA, a virally-encoded protein that is not only able to prevent cellular apoptosis but also to inhibit signalling downstream from mitochondrial MAVS. vMIA has been shown to localize at mitochondria and to trigger their fragmentation, a phenomenon proven to be essential for the signalling inhibition. Here, we demonstrate that vMIA is also localized at peroxisomes, induces their fragmentation and inhibits the peroxisomal-dependent antiviral signalling pathway. Importantly, we demonstrate that peroxisomal fragmentation is not essential for vMIA to specifically inhibit signalling downstream the peroxisomal MAVS. We also show that vMIA interacts with the cytoplasmic chaperone Pex19, suggesting that the virus has developed a strategy to highjack the peroxisomal membrane proteins' transport machinery. Furthermore, we show that vMIA is able to specifically interact with the peroxisomal MAVS. Our results demonstrate that peroxisomes constitute a platform for evasion of the cellular antiviral response and that the human cytomegalovirus has developed a mechanism by which it is able to specifically evade the peroxisomal MAVS-dependent antiviral signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Mechanical stress is often associated to interverterbal disc (IVD) degeneration and the effect of mechanical loading on IVD has been studied and reviewed.1,2 Previously, expression of heat shock proteins, HSP70 and HSP27 has been found in pathological discs.3 However, there is no direct evidence on whether IVD cells respond to the mechanical loading by expression of HSPs. The objective of this study is to investigate the stress response of IVD cells during compressive loading in an organ culture. Materials and Methods: Fresh adult bovine caudal discs were cultured with compressive loading applied at physiological range. Effect of loading type (static and dynamic) and repeated loading (2 hours per day for 2 days) were studied. Nucleus pulposus (NP) and annulus fibrosus (AF) of the IVD were retrieved at different time points: right after loading and right after resting. Positive control discs were heat shocked (43°C). Cell activity was assessed and expression of stress response genes (HSP70 and HSF1) and matrix remodeling genes (ACAN, COL2, COL1, ADAMTS4, MMP3 and MMP13) were studied. Results: Cell activity was maintained in all groups. Both NP and AF expressed high level of HSP70 in heat shock groups, confirming their expression in response to stress. In NP, expression of HSP70 was up-regulated after static loading and dynamic loading with higher fold change was observed after static loading. During repeated loading, HSP70 appeared to be upregulated right after loading and decreased after resting. Such trend was not observed in AF and HSF1 levels. Expressions of matrix remodeling genes did not change significantly with loading except ADAMTS4 decreased in AF during static loading. Conclusion: This study demonstrated that NP cells upregulate expression of HSP70 in response to loading induced stress without changing cell activity and matrix remodeling significantly. Acknowledgments: This project was funded by AO Spine (AOSPN) (grant number: SRN_2011_14) and a fellowship exchange award by AO Spine Scientific Research Network (SRN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apicomplexan parasites of the genera Theileria and Plasmodium have complicated life cycles including infection of a vertebrate intermediate host and an arthropod definitive host. As the Plasmodium parasite progresses through its life cycle, it enters a number of different cell types, both in its mammalian and mosquito hosts. The fate of these cells varies greatly, as do the parasite and host molecules involved in parasite-host interactions. In mammals, Plasmodium parasites infect hepatocytes and erythrocytes whereas Theileria infects ruminant leukocytes and erythrocytes. Survival of Plasmodium-infected hepatocytes and Theileria-infected leukocytes depends on parasite-mediated inhibition of host cell apoptosis but only Theileria-infected cells exhibit a fully transformed phenotype. As the development of both parasites progresses towards the merozoite stage, the parasites no longer promote the survival of the host cell and the infected cell is finally destroyed to release merozoites. In this review we describe similarities and differences of parasite-host cell interactions in Plasmodium-infected hepatocytes and Theileria-infected leukocytes and compare the observed phenotypes to other parasite stages interacting with host cells.