981 resultados para CANCERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

miR-498 is a non-coding RNA located intergenically in 19q13.41. Due to its predicted targeting of several genes involved in control of cellular growth, we examined the expression of miR-498 in colon cancer cell lines and a large cohort of patients with colorectal adenocarcinoma. Two colon cancer cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The expression of miR-498 was tested in these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). Tissues from 80 patients with surgical resection of colorectum (60 adenocarcinomas and 20 non-neoplastic tissues) were tested for miR-498 expression by qRT-PCR. In addition, an exogenous miR-498 (mimic) was used to detect the miRNA׳s effects on cell proliferation and cell cycle events in SW480 using MTT calorimetric assay and flow cytometry respectively. The colon cancer cell lines showed reduced expression of miR-498 compared to a normal colonic epithelial cell line. Mimic driven over expression of miR-498 in the SW480 cell line resulted in reduced cell proliferation and increased proportions of G2-M phase cells. In tissues, miR-498 expression was too low to be detected in all colorectal adenocarcinoma compared to non-neoplastic tissues. This suggests that the down regulation of miR-498 in colorectal cancer tissues and the direct suppressive cellular effect noted in cancer cell lines implies that miR-498 has some direct or indirect role in the pathogenesis of colorectal adenocarcinomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Alcohol consumption and smoking are the main causes of upper digestive tract cancers. These risk factors account for over 75% of all cases in developed countries. Epidemiological studies have shown that alcohol and tobacco interact in a multiplicative way to the cancer risk, but the pathogenetic mechanism behind this is poorly understood. Strong experimental and human genetic linkage data suggest that acetaldehyde is one of the major factors behind the carcinogenic effect. In the digestive tract, acetaldehyde is mainly formed by microbial metabolism of ethanol. Acetaldehyde is also a major constituent of tobacco smoke. Thus, acetaldehyde from both of these sources may have an interacting carcinogenic effect in the human upper digestive tract. Aims: The first aim of this thesis was to investigate acetaldehyde production and exposure in the human mouth resulting from alcohol ingestion and tobacco smoking in vivo. Secondly, specific L-cysteine products were prepared to examine their efficacy in the binding of salivary acetaldehyde in order to reduce the exposure of the upper digestive tract to acetaldehyde. Methods: Acetaldehyde levels in saliva were measured from human volunteers during alcohol metabolism, during tobacco smoking and during the combined use of alcohol and tobacco. The ability of L-cysteine to eliminate acetaldehyde during alcohol metabolism and tobacco smoking was also investigated with specifically developed tablets. Also the acetaldehyde production of Escherichia coli - an important member of the human microbiota - was measured in different conditions prevailing in the digestive tract. Results and conclusions: These studies established that smokers have significantly increased acetaldehyde exposure during ethanol consumption even when not actively smoking. Acetaldehyde exposure was dramatically further increased during active tobacco smoking. Thus, the elevated aerodigestive tract cancer risk observed in smokers and drinkers may be the result of the increased acetaldehyde exposure. Acetaldehyde produced in the oral cavity during ethanol challenge was significantly decreased by a buccal L-cysteine -releasing tablet. Also smoking-derived acetaldehyde could be totally removed by using a tablet containing L-cysteine. In conclusion, this thesis confirms the essential role of acetaldehyde in the pathogenesis of alcohol- and smoking-induced cancers. This thesis presents a novel experimental approach to decrease the local acetaldehyde exposure of the upper digestive tract with L-cysteine, with the eventual goal of reducting the prevalence of upper digestive tract cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer worldwide. Despite advances in combined modality therapy (surgery, radiotherapy, chemotherapy) the 5-year survival rate in stage III and IV disease remains at 40% - 60%. Short-range Auger-electron emitters, such as In-111 and In-114m, tagged with a drug, molecule, peptide, protein or nanoparticles brought in close proximity to nuclear DNA represent a fascinating alternative for treating cancer. In this thesis, we studied the usefulness of Indium-111-bleomycin complex (In-111-BLMC) in the diagnostics and potential therapy of HNSCC using in vitro HNSCC cell lines, in vivo nude mice, and in vivo HNSCC patients. In in vitro experiments with HNSCC cell lines, the sensitivity to external beam radiation, BLM, In-111-BLMC, and In-111-Cl3 was studied using the 96-well plate clonogenic assay. The influence of BLM and In-111-BLMC on the cell cycle was measured with flow cytometry. In in vivo nude mice xenograft studies, the activity ratios of In-111-BLMC were obtained in gamma camera images. The effect of In-111-BLMC in HNSCC xenografts was studied. In in vivo patient studies, we determined the tumor uptake of In-111-BLMC with gamma camera and the radioactivity from tumor samples using In-111-BLMC with specific activity of 75, 175, or 375 MBq/mg BLM. The S values, i.e. absorbed dose in a target organ per cumulated activity in a source organ, were simulated for In-111 and In-114m. In vitro studies showed the variation of sensitivity for external beam radiation, BLM, and In-111-BLMC between HNSCC cell lines. IC50 values for BLM were 1.6-, 1.8-, and 2.1-fold higher than In-111-BLMC (40 MBq/mg BLM) in three HNSCC cell lines. Specific In-111 activity of 40 MBq/mgBLM was more effective in killing cells than specific In-111 activity of 195MBq/mgBLM (p=0.0023). In-111-Cl3 alone had no killing effect. The percentage of cells in the G2/M phase increased after exposure to BLM and especially to In-111-BLMC in the three cell lines studied, indicating a G2/M block. The tumor-seeking behavior was shown in the in vivo imaging study of xenografted mice. BLM and In-111-BLMC were more effective than NaCl in reducing xenografted tumor size in HNSCC. The uptake ratios received from gamma images in the in vivo patient study varied from 1.2 to 2.8 in malignant tumors. However, the uptake of In-111-BLMC was unaffected by increasing the injected activity. A positive correlation existed between In-111-BLMC uptake, Ki-67/MIB activity, and number of mitoses. Regarding the S values, In-114m delivered a 4-fold absorbed radiation dose into the tumor compared with In-111, and thus, In-114m-BLMC might be more effective than In-111-BLMC at the DNA level. Auger-electron emitters, such as In-111 and In-114m, might have potential in the treatment of HNSCC. Further studies are needed to develop a radiopharmaceutical agent with appropriate physical properties of the radionuclide and a suitable carrier to bring it to the targeted tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with inherited deficiency in DNA mismatch repair(MMR) (Lynch syndrome) LS are predisposed to different cancers in a non-random fashion. Endometrial cancer (EC) is the most common extracolonic malignancy in LS. LS represents the best characterized form of hereditary nonpolyposis colorectal carcinoma (HNPCC). Other forms of familial non-polyposis colon cancer exist, including familial colorectal cancer type X (FCCX). This syndrome resembles LS, but MMR gene defects are excluded and the predisposition genes are unknown so far. To address why different organs are differently susceptible to cancer development, we examined molecular similarities and differences in selected cancers whose frequency varies in LS individuals. Tumors that are common (colorectal, endometrial, gastric) and less common (brain, urological) in LS were characterized for MMR protein expression, microsatellite instability (MSI), and by altered DNA methylation. We also studied samples of histologically normal endometrium, endometrial hyperplasia,and cancer for molecular alterations to identify potential markers that could predict malignant transformation in LS and sporadic cases. Our results suggest that brain and kidney tumors follow a different pathway for cancer development than the most common LS related cancers.Our results suggest also that MMR defects are detectable in endometrial tissues from a proportion of LS mutation carriers prior to endometrial cancer development. Traditionally (complex) atypical hyperplasia has been considered critical for progression to malignancy. Our results suggest that complex hyperplasia without atypia is equally important as a precursor lesion of malignancy. Tumor profiles from Egypt were compared with colorectal tumors from Finland to evaluate if there are differences specific to the ethnic origin (East vs.West). Results showed for the first time a distinct genetic and epigenetic signature in the Egyptian CRC marked by high methylation of microsatellite stable tumors associated with advanced stage, and low frequency of Wnt signaling activation, suggesting a novel pathway. DNA samples from FCCX families were studied with genome wide linkage analysis using microsatellite markers. Selected genes from the linked areas were tested for possible mutations that could explain predisposition to a large number of colon adenomas and carcinomas seen in these families. Based on the results from the linkage analysis, a number of areas with tentative linkage were identified in family 20. We narrowed down these areas by additional microsatellite markers to found a mutation in the BMPR1A gene. Sequencing of an additional 17 FCCX families resulted in a BMPR1A mutation frequency of 2/18 families (11%). Clarification of the mechanisms of the differential tumor susceptibility in LS increases the understanding of gene and organ specific targets of MMR deficiency. While it is generally accepted that widespread MMR deficiency and consequent microsatellite instability (MSI) drives tumorigenesis in LS, the timing of molecular alterations is controversial. In particular, it is important to know that alterations may occur several years before cancer formation, at stages that are still histologically regarded as normal. Identification of molecular markers that could predict the risk of malignant transformation may be used to improve surveillance and cancer prevention in genetically predisposed individuals. Significant fractions of families with colorectal and/or endometrial cancer presently lack molecular definition altogether. Our findings expand the phenotypic spectrum of BMPR1A mutations and, for the first time, link FCCX families to the germline mutation of a specific gene. In particular, our observations encourage screening of additional families with FCCX for BMPR1A mutation, which is necessary in obtaining a reliable estimate of the share of BMPR1A-associated cases among all FCCX families worldwide. Clinically, the identification of predisposing mutations enables targeted cancer prevention in proven mutation carriers and thereby reduces cancer morbidity and mortality in the respective families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug resistance is a major therapeutic challenge faced in the conventional chemotherapy. Nanocarriers are beneficial in the transport of chemotherapeutics by their ability to bypass the P-gp efflux in cancers. Most of the P-gp inhibitors under phase II clinical trial are facing failures and hence there is a need to develop a suitable carrier to address P-gp efflux in cancer therapy. Herein, we prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin against highly drug resistant HeLa cells. The experimental results revealed that improved cellular uptake, enhanced drug intensity profile with greater percentage of apoptotic cells was attained when doxorubicin loaded magnetic nanocapsules were used in the presence of external magnetic field. Hence, we conclude that this magnetic field assisted nanocapsule system can be used for delivery of chemotherapeutics for potential therapeutic efficacy at minimal dose in multidrug resistant cancers. From the Clinical Editor: Many cancer drugs fail when cancer cells become drug resistant. Indeed, multidrug resistance (MDR) is a major therapeutic challenge. One way that tumor cells attain MDR is by over expression of molecular pumps comprising of P-glycoprotein (P-gp) and multidrug resistant proteins (MRP), which can expel chemotherapeutic drugs out of the cells. In this study, the authors prepared novel protamine and carboxymethyl cellulose polyelectrolyte multi-layered nanocapsules modified with Fe3O4 nanoparticles for the delivery of doxorubicin. The results show that there was better drug delivery and efficacy even against MDR tumor cells. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this project is to find a suitable ATO concentration to combine with already approved chemotherapeutic agents to find that synergistic effect in triple negative breast cancer MDA-MB 231 cell line, as a new strategy to treat the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a recently developed and powerful classification tool, probabilistic neural network was used to distinguish cancer patients from healthy persons according to the levels of nucleosides in human urine. Two datasets (containing 32 and 50 patterns, respectively) were investigated and the total consistency rate obtained was 100% for dataset 1 and 94% for dataset 2. To evaluate the performance of probabilistic neural network, linear discriminant analysis and learning vector quantization network, were also applied to the classification problem. The results showed that the predictive ability of the probabilistic neural network is stronger than the others in this study. Moreover, the recognition rate for dataset 2 can achieve to 100% if combining, these three methods together, which indicated the promising potential of clinical diagnosis by combining different methods. (C) 2002 Elsevier Science B.V. All rights reserved.