713 resultados para Aleurodicus mirabilis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazil the knowledge about the geographical distribution and host plants of whiteflies (Hemiptera: Aleyrodidae) is limited, mainly on crops. In this communication, the occurrence of Aleurodicus mirabilis (Cockerell, 1898) in high infestations in custard apple (Annona squamosa Linnaeus, 1753) is recorded in the state of São Paulo, Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new rotenoids named mirabijalone A-D-1) (1-4), together with 9-O-methyl-4-hydroxyboeravinone B (5), boeravinone C (6) and F (7), and 1,2,3,4-tetrahydro-1-methylisoquinoline-7,8-diol (8), were isolated from the roots of Mirabilis jalapa. The structures of these compounds were determined on the basis of their HR-EI-MS, IR, UV, H-1- and C-13-NMR (DEPT). and 2D NMR (HMQC, HMBC, NOESY) data. Among them, 1,2,3,4-tetrahydro-1-methylisoquinoline-7,8-diol (8) showed a 48% inhibition against HIV-1 reverse transcriptase at 210 mug/ml.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our knowledge of pathogenesis has benefited from a better understanding of the roles of specific virulence factors in disease. To determine the role of the virulence factor ZapA, a 54-kDa metalloproteinase of Proteus mirabilis, in prostatitis, rats were infected with either wild-type (WT) P. mirabilis or its isogenic ZapA- mutant KW360. The WT produced both acute and chronic prostatitis showing the typical histological progressions that are the hallmarks of these diseases. Infection with the ZapA- mutant, however, resulted in reduced levels of acute prostatitis, as determined from lower levels of tissue damage, bacterial colonization, and inflammation. Further, the ZapA- mutant failed to establish a chronic infection, in that bacteria were cleared from the prostate, inflammation was resolved, and tissue was seen to be healing. Clearance from the prostate was not the result of a reduced capacity of the ZapA- mutant to form biofilms in vitro. These finding clearly define ZapA as an important virulence factor in both acute and chronic bacterial prostatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we report for the first time the comprehensive inhibitor profiling of the Proteus mirabilis metalloprotease virulence factor, ZapA (mirabilysin) using a 160 compound focused library of N-alpha mercaptoamide dipeptides, in order to map the S1´ and S2´ binding site preferences of this important enzyme. This study has revealed a preference for the aromatic residues tyrosine and tryptophan in P1´ and aliphatic residues in P2´. From this library, six compounds were identified which exhibited sub- to low micromolar Ki values. The most potent inactivator, SH-CO2-Y-V-NH2 was capable of preventing ZapA-mediated hydrolysis of heat denatured IgA, indicating these inhibitors may be capable of protecting host proteins against ZapA during colonisation and infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metalloproteases ZapA of Proteus mirabilis and LasB of Pseudomonas aeruginosa are known to be virulence factors their respective opportunistic bacterial pathogens, and are members of the structurally related serralysin and thermolysin families of bacterial metalloproteases respectively. Secreted at the site of infection, these proteases play a key role in the infection process, contributing to tissue destruction and processing of components of the host immune system. Inhibition of these virulence factors may therefore represent an antimicrobial strategy, attenuating the virulence of the infecting pathogen. Previously we have screened a library of N-alpha mercaptoamide dipeptide inhibitors against both ZapA and LasB, with the aim of mapping the S1' binding site of the enzymes, revealing both striking similarities and important differences in their binding preferences. Here we report the design, synthesis, and screening of several inhibitor analogues, based on two parent inhibitors from the original library. The results have allowed for further characterization of the ZapA and LasB active site binding pockets, and have highlighted the possibility for development of broad-spectrum bacterial protease inhibitors, effective against enzymes of the thermolysin and serralysin metalloprotease families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outer membrane protein (MP) profiles and multilocus enzyme electrophoresis (MEE) analysis were used as tools for differentiating clinical isolates of Proteus spp. Fourteen distinct MP profiles were established by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis in 54 clinical isolates of Proteus spp. (44 strains identified as P. mirabilis and 10 strains identified as P. vulgaris). Forty-one isolates of P. mirabilis and eight isolates of P. vulgaris were grouped within six and three MP profiles, respectively. The remaining P. mirabilis and P. vulgaris isolates had unique profiles. MEE analysis was used to further discriminate among the strains belonging to the same MP groups. Thirty-five distinct electrophoretic types (ETs) were identified among P. mirabilis isolates. The isolates of P. mirabilis from the four most common MP groups were subgrouped into 30 ETs. All of the P. vulgaris strains had unique ETs. The results suggest that upon biochemical classification of Proteus isolates as P. mirabilis or P. vulgaris, further differentiation among strains of the same species can be obtained by the initial determination of MP profiles followed by MEE analysis of strains with identical MPs.