950 resultados para Salmonella
Resumo:
Details are given of the morphological, biochemical and serological characteristics of a specimen of Salmonella agona isolated from a sample of frozen boiled clam meat (Villorita cyprinoides) processed in a factory at Cochin. Possible association of this serotype with human salmonellosis is considered briefly.
Resumo:
Salmonella was isolated from 12% of PD shrimps, 10% of HL shrimps, 14% of PUD shrimps, 17% of lobsters, 14% of cuttle fish, 25% of cat fish and 20% of seer fish (all frozen) tested. One percent of the fish meal, 4% of dried non-penaeid prawn and 23% of sea beach sand showed incidence of the organism. Salmonella was also isolated from 2 and 4% of the swab samples of utensil surfaces and the floor surface of the processing hall respectively as well as from 1% of the process water tested. All the serotypes of Salmonella tested were resistant to freezing at -40°C, but during subsequent storage at -20°C, there was some difference between the serotypes with regard to their viability, S. paratyphi B being the most resistant which survived up to 9 months while S. saintpaul the least resistant having survival up to 5 months only.
Resumo:
Thirty four different serotypes of Salmonella have been isolated from aquatic products. The number of serotypes from frozen froglegs were 22. Only four serotypes were isolated from frozen shrimps. S. weltevreden predominates in frozen shrimps and fish. S. roan and S. larochelle were isolated for the first time in India. Isolation of six rare serotypes of Salmonella has also been reported.
Resumo:
The results obtained in the present study suggest that Escherichia coli and faecal streptococci are of little value as indicators of the possible presence of Salmonella in frozen fishery products.
Resumo:
研究了四种餐洗剂及其主要成分LABS、Dispersol D、Alkanolamide的潜在 诱变活性。结果 表明四种牌号餐洗剂在高浓度时能诱发SCE形成。除TL牌餐洗剂 加入S9代谢激活系统后未见 诱变作用外, 其他三种餐洗剂和三种主要成分都表 现出致HisG46和HisD3052基因回复突变的能力。表3参16
Resumo:
Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.
Resumo:
Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics.
Resumo:
Antibodies are known to be essential in controlling Salmonella infection, but their exact role remains elusive. We recently developed an in vitro model to investigate the relative efficiency of four different human immunoglobulin G (IgG) subclasses in modulating the interaction of the bacteria with human phagocytes. Our results indicated that different IgG subclasses affect the efficacy of Salmonella uptake by human phagocytes. In this study, we aim to quantify the effects of IgG on intracellular dynamics of infection by combining distributions of bacterial numbers per phagocyte observed by fluorescence microscopy with a mathematical model that simulates the in vitro dynamics. We then use maximum likelihood to estimate the model parameters and compare them across IgG subclasses. The analysis reveals heterogeneity in the division rates of the bacteria, strongly suggesting that a subpopulation of intracellular Salmonella, while visible under the microscope, is not dividing. Clear differences in the observed distributions among the four IgG subclasses are best explained by variations in phagocytosis and intracellular dynamics. We propose and compare potential factors affecting the replication and death of bacteria within phagocytes, and we discuss these results in the light of recent findings on dormancy of Salmonella.
Resumo:
An understanding of how pathogens colonize their hosts is crucial for the rational design of vaccines or therapy. While the molecular factors facilitating the invasion and systemic infection by pathogens are a central focus of research in microbiology, the population biological aspects of colonization are still poorly understood. Here, we investigated the early colonization dynamics of Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in the streptomycin mouse model for diarrhea. We focused on the first step on the way to systemic infection - the colonization of the cecal lymph node (cLN) from the gut - and studied roles of inflammation, dendritic cells and innate immune effectors in the colonization process. To this end, we inoculated mice with mixtures of seven wild type isogenic tagged strains (WITS) of S. Tm. The experimental data were analyzed with a newly developed mathematical model describing the stochastic immigration, replication and clearance of bacteria in the cLN. We estimated that in the beginning of infection only 300 bacterial cells arrive in the cLN per day. We further found that inflammation decreases the net replication rate in the cLN by 23%. In ccr7-/- mice, in which dendritic cell movement is impaired, the bacterial migration rate was reduced 10-fold. In contrast, cybb-/- mice that cannot generate toxic reactive oxygen species displayed a 4-fold higher migration rate from gut to cLN than wild type mice. Thus, combining infections with mixed inocula of barcoded strains and mathematical analysis represents a powerful method for disentangling immigration into the cLN from replication in this compartment. The estimated parameters provide an important baseline to assess and predict the efficacy of interventions. © 2013 Kaiser et al.
Resumo:
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Resumo:
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses. © 2013 Institut Pasteur.
Resumo:
2006
Resumo:
2006
Resumo:
2006
Resumo:
The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SE Delta waaL) or deep-defective (SE Delta gal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SE Delta waaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SE Delta waaL as non-live vaccine in the mouse model.