992 resultados para genetic recombination


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently cloned biosynthesis genes for the O7-lipopolysaccharide (O7-LPS) side chain from the Escherichia coli K-1 strain VW187 (M. A. Valvano, and J. H. Crosa, Infect. Immun. 57:937-943, 1989). To characterize the O7-LPS region, the recombinant cosmids pJHCV31 and pJHCV32 were mutagenized by transposon mutagenesis with Tn3HoHo1, which carries a promoterless lac operon and can therefore generate lacZ transcriptional fusions with target DNA sequences. Cells containing mutated plasmids were examined for their ability to react by coagglutination with O7 antiserum. The LPS pattern profiles of the insertion mutants were also investigated by electrophoresis of cell envelope fractions, followed by silver staining and immunoblotting analysis. These experiments identified three phenotypic classes of mutants and defined a region in the cloned DNA of about 14 kilobase pairs that is essential for O7-LPS expression. Analysis of beta-galactosidase production by cells carrying plasmids with transposon insertions indicated that transcription occurs in only one direction along the O7-LPS region. In vitro transcription-translation experiments revealed that the O7-LPS region encodes at least 16 polypeptides with molecular masses ranging from 20 to 48 kilodaltons. Also, the O7-LPS region in VW187 was mutagenized by homologous recombination with subsets of the cloned O7-LPS genes subcloned into a suicide plasmid vector. O7-LPS-deficient mutants of VW187 were complemented with pJHCV31 and pJHCV32, confirming that these cosmids contain genetic information that is essential for the expression of the O7 polysaccharide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicastrin (NCSTN) is a component of the ?-secretase complex and therefore potentially a candidate risk gene for Alzheimer's disease. Here, we have developed a novel functional genomics methodology to express common locus haplotypes to assess functional differences. DNA recombination was used to engineer 5 bacterial artificial chromosomes (BACs) to each express a different haplotype of the NCSTN locus. Each NCSTN-BAC was delivered to knockout nicastrin (Ncstn(-/-)) cells and clonal NCSTN-BAC(+)/Ncstn(-/-) cell lines were created for functional analyses. We showed that all NCSTN-BAC haplotypes expressed nicastrin protein and rescued ?-secretase activity and amyloid beta (Aß) production in NCSTN-BAC(+)/Ncstn(-/-) lines. We then showed that genetic variation at the NCSTN locus affected alternative splicing in human postmortem brain tissue. However, there was no robust functional difference between clonal cell lines rescued by each of the 5 different haplotypes. Finally, there was no statistically significant association of NCSTN with disease risk in the 4 cohorts. We therefore conclude that it is unlikely that common variation at the NCSTN locus is a risk factor for Alzheimer's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex adaptive polymorphisms are common in nature, but what mechanisms maintain the underlying favorable allelic combinations [1-4]? The convergent evolution of polymorphic social organization in two independent ant species provides a great opportunity to investigate how genomes evolved under parallel selection. Here, we demonstrate that a large, nonrecombining "social chromosome" is associated with social organization in the Alpine silver ant, Formica selysi. This social chromosome shares architectural characteristics with that of the fire ant Solenopsis invicta [2], but the two show no detectable similarity in gene content. The discovery of convergence at two levels-the phenotype and the genetic architecture associated with alternative social forms-points at general genetic mechanisms underlying transitions in social organization. More broadly, our findings are consistent with recent theoretical studies suggesting that suppression of recombination plays a key role in facilitating coordinated shifts in coadapted traits [5, 6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A completely effective vaccine for malaria (one of the major infectious diseases worldwide) is not yet available; different membrane proteins involved in parasite-host interactions have been proposed as candidates for designing it. It has been found that proteins encoded by the merozoite surface protein (msp)-7 multigene family are antibody targets in natural infection; the nucleotide diversity of three Pvmsp-7 genes was thus analyzed in a Colombian parasite population. By contrast with P. falciparum msp-7 loci and ancestral P. vivax msp-7 genes, specie-specific duplicates of the latter specie display high genetic variability, generated by single nucleotide polymorphisms, repeat regions, and recombination. At least three major allele types are present in Pvmsp-7C, Pvmsp-7H and Pvmsp-7I and positive selection seems to be operating on the central region of these msp-7 genes. Although this region has high genetic polymorphism, the C-terminus (Pfam domain ID: PF12948) is conserved and could be an important candidate when designing a subunit-based antimalarial vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype–phenotype mapping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuromuscular disorders are a heterogeneous group of genetic diseases, caused by mutations in genes coding sarcolemmal, sarcomeric, and citosolic muscle proteins. Deficiencies or loss of function of these proteins leads to variable degree of progressive loss of motor ability. Several animal models, manifesting phenotypes observed in neuromuscular diseases, have been identified in nature or generated in laboratory. These models generally present physiological alterations observed in human patients and can be used as important tools for genetic, clinic, and histopathological studies. The mdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD). Although it is a good genetic and biochemical model, presenting total deficiency of the protein dystrophin in the muscle, this mouse is not useful for clinical trials because of its very mild phenotype. The canine golden retriever MD model represents a more clinically similar model of DMD due to its larger size and significant muscle weakness. Autosomal recessive limb-girdle MD forms models include the SJL/J mice, which develop a spontaneous myopathy resulting from a mutation in the Dysferlin gene, being a model for LGMD2B. For the human sarcoglycanopahties (SG), the BIO14.6 hamster is the spontaneous animal model for delta-SG deficiency, whereas some canine models with deficiency of SG proteins have also been identified. More recently, using the homologous recombination technique in embryonic stem cell, several mouse models have been developed with null mutations in each one of the four SG genes. All sarcoglycan-null animals display a progressive muscular dystrophy of variable severity and share the property of a significant secondary reduction in the expression of the other members of the sarcoglycan subcomplex and other components of the Dystrophin-glycoprotein complex. Mouse models for congenital MD include the dy/dy (dystrophia-muscularis) mouse and the allelic mutant dy(2J)/dy(2J) mouse, both presenting significant reduction of alpha 2-laminin in the muscle and a severe phenotype. The myodystrophy mouse (Large(myd)) harbors a mutation in the glycosyltransferase Large, which leads to altered glycosylation of alpha-DG, and also a severe phenotype. Other informative models for muscle proteins include the knockout mouse for myostatin, which demonstrated that this protein is a negative regulator of muscle growth. Additionally, the stress syndrome in pigs, caused by mutations in the porcine RYR1 gene, helped to localize the gene causing malignant hypertermia and Central Core myopathy in humans. The study of animal models for genetic diseases, in spite of the existence of differences in some phenotypes, can provide important clues to the understanding of the pathogenesis of these disorders and are also very valuable for testing strategies for therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During meiosis, combinatorial associations of genetic traits arise from homologous recombination between parental chromosomes. Histone H3 lysine 4 trimethylation marks meiotic recombination hotspots in yeast and mammals, but how this ubiquitous chromatin modification relates to the initiation of double-strand breaks (DSBs) dependent on Spo11 remains unknown. Here, we show that the tethering of a PHD-containing protein, Spp1 (a component of the COMPASS complex), to recombinationally cold regions is sufficient to induce DSB formation. Furthermore, we found that Spp1 physically interacts with Mer2, a key protein of the differentiated chromosomal axis required for DSB formation. Thus, by interacting with H3K4me3 and Mer2, Spp1 promotes recruitment of potential meiotic DSB sites to the chromosomal axis, allowing Spo11 cleavage at nearby nucleosome-depleted regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retroviral recombination drives viral diversity and facilitates the emergence of immune escape and drug resistant mutants that contribute to disease progression. Current estimates of retroviral recombination rates are based on indirect measurements that do not take into account the effects of multiple recombination events. In the presence of multiple template switches, any even number of template switches result in no observed recombination and any odd number is detected as a single recombination event. We demonstrate that ignoring multiple recombination events consistently underestimates the true recombination rate, especially over large genetic distances and high rates of recombination. Here, we present a novel approach to measure rates of recombination across different gene segments regardless of the effects of genetic distance and the overall rate of recombination. We apply these tools to a novel HIV-1 marker system, which mimics the recombination process between closely related genomes, analogous to those found within the quasispecies of an infected individual. We directly measure the recombination rate in gag, correcting for the effects of multiple template switches and background recombination. Furthermore, our analysis indicates that recombination rates are likely to vary across the viral genome. This system is applicable to other studies to accurately measure the recombination rate that is critical for the diversification of retroviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cercus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species-B. thuringiensis or B. cereus-were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Basidiomycete fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen of soybean in Brazil, where the average yield losses have reached 30 to 60% in some states in Northern Brazil. No information is currently available concerning levels of genetic diversity and population structure for this pathogen in Brazil. A total of 232 isolates of R. solani AG1 IA were collected from five soybean fields in the most important soybean production areas in central-western, northern, and northeastern Brazil. These isolates were genotyped using 10 microsatellite loci. Most of the multilocus genotypes (MLGTs) were site-specific, with few MLGTs shared among populations. Significant population subdivision was evident. High levels of admixture were observed for populations from Mato Grosso and Tocantins. After removing admixed genotypes, three out of five field populations (Maranhao, Mato Grosso, and Tocantins), were in Hardy-Weinberg (HW) equilibrium, consistent with sexual recombination. HW and gametic disequilibrium were found for the remaining soybean-infecting populations. The findings of low genotypic diversity, departures from HW equilibrium, gametic disequilibrium, and high degree of population subdivision in these R. solani AG-1 IA populations from Brazil are consistent with predominantly asexual reproduction, short-distance dispersal of vegetative propagules (mycelium or sclerotia), and limited long-distance dispersal, possibly via contaminated seed. None of the soybean-infecting populations showed a reduction in population size (bottleneck effect). We detected asymmetric historical migration among the soybean-infecting populations, which could explain the observed levels of subdivision.