942 resultados para ONSET


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a severe psychotic disorder affecting 0.5-1 % of the population. The disorder is characterized by hallucinations; delusions; disorganized behavior and speech; avolition; anhedonia; flattened affect and cognitive deficits. The etiology of the disorder is complex with evidence for multiple genes contributing to the onset of the disorder along with environmental factors. DISC1 is one of the most promising candidate genes for schizophrenia. It codes for a protein which takes part in numerous molecular interactions along several pathways. This network, termed as the DISC1 pathway, is evidently important for the development and maturation of the central nervous system from the embryo until young adulthood. Disruption at these pathways is thought to predispose schizophrenia. In the present study, we have studied the DISC1 pathway in the etiology of schizophrenia in the Finnish population. We have utilized large Finnish samples; the schizophrenia family sample where DISC1 was originally shown to associate with schizophrenia and the Northern Finland birth cohort 1966 (NFBC66). Several DISC1 binding partners displayed evidence for association in the family sample along with DISC1. Through a genome-wide linkage study, we found a significant linkage signal to a locus where a DISC1 binding partner NDE1 is located at the carriers of a certain DISC1 risk variant. In a follow-up study, genetic markers in NDE1 displayed significant evidence for association with schizophrenia. Further exploration of association between 11 genes of the DISC1 pathway and schizophrenia led to recognition of novel variants in NDEL1, PDE4B and PDE4D that significantly either increased or decreased the risk for schizophrenia. Further, we found evidence that DISC1 itself has a significant role in the human mental functioning even in the healthy population. Variants in DISC1 had a significant effect on anhedonia which is a trait present at everybody but is in its severe form one of the main symptoms of schizophrenia and correlates with the risk of developing the disorder. Further, utilizing genome-wide marker data, we recognized three genes; MIR620; CCDC141 and LCT; that are closely related to the DISC1 pathway but which effects on anhedonia were observable only at the individuals who carried these specific DISC1 variants. Our findings significantly add up to the previous evidence for the involvement of DISC1 and the DISC1 pathway in the etiology of schizophrenia and psychosis. Our results support the concept of a number of DISC1 pathway related genes contributing in the etiology of schizophrenia along with DISC1 and provide new candidates for the studies of schizophrenia. Our findings also significantly increase the importance of DISC1 itself as having a role in psychological functioning in the general population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blood and lymphatic vascular systems are essential for life, but they may become harnessed for sinister purposes in pathological conditions. For example, tumors learn to grow a network of blood vessels (angiogenesis), securing a source of oxygen and nutrients for sustained growth. On the other hand, damage to the lymph nodes and the collecting lymphatic vessels may lead to lymphedema, a debilitating condition characterized by peripheral edema and susceptibility to infections. Promoting the growth of new lymphatic vessels (lymphangiogenesis) is an attractive approach to treat lymphedema patients. Angiopoietin-1 (Ang1), a ligand for the endothelial receptor tyrosine kinases Tie1 and Tie2. The Ang1/Tie2 pathway has previously been implicated in promoting endothelial stability and integrity of EC monolayers. The studies presented here elucidate a novel function for Ang1 as a lymphangiogenic factor. Ang1 is known to decrease the permeability of blood vessels, and could thus act as a more global antagonist of plasma leakage and tissue edema by promoting growth of lymphatic vessels and thereby facilitating removal of excess fluid and other plasma components from the interstitium. These findings reinforce the idea that Ang1 may have therapeutic value in conditions of tissue edema. VEGFR-3 is present on all endothelia during development, but in the adult its expression becomes restricted to the lymphatic endothelium. VEGF-C and VEGF-D are ligands for VEGFR-3, and potently promote lymphangiogenesis in adult tissues, with direct and remarkably specific effects on the lymphatic endothelium in adult tissues. The data presented here show that VEGF-C and VEGF-D therapy can restore collecting lymphatic vessels in a novel orthotopic model of breast cancer-related lymphedema. Furthermore, the study introduces a novel approach to improve VEGF-C/VEGF-D therapy by using engineered heparin-binding forms of VEGF-C, which induced the rapid formation of organized lymphatic vessels. Importantly, VEGF-C therapy also greatly improved the survival and integration of lymph node transplants. The combination of lymph node transplantation and VEGF-C therapy provides a basis for future therapy of lymphedema. In adults, VEGFR-3 expression is restricted to the lymphatic endothelium and the fenestrated endothelia of certain endocrine organs. These results show that VEGFR-3 is induced at the onset of angiogenesis in the tip cells that lead the formation of new vessel sprouts, providing a tumor-specific vascular target. VEGFR-3 acts downstream of VEGF/VEGFR-2 signals, but, once induced, can sustain angiogenesis when VEGFR-2 signaling is inhibited. The data presented here implicate VEGFR-3 as a novel regulator of sprouting angiogenesis along with its role in regulating lymphatic vessel growth. Targeting VEGFR-3 may provide added efficacy to currently available anti-angiogenic therapeutics, which typically target the VEGF/VEGFR-2 pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that Southwood's instability criterion for the onset of the Kelvin-Helmholtz instability at the magnetopause can be directly obtained from the marginal instability condition for the pure Alfven surface waves propagating along the interface between two incompressible media in the limit when the wave propagation direction is nearly perpendicular to the direction of the largest magnetic field. The phase velocity of the surface waves first excited at the onset of the instability depends on the angle between the interplanetary magnetic field and flow velocity in the solar wind in front of the bow shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Germline mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell cancer (HLRCC). FH is a nuclear encoded enzyme which functions in the Krebs tricarboxylic acid cycle, and homozygous mutation in FH lead to severe developmental defects. Both uterine and cutaneous leiomyomas are components of the HLRCC phenotype. Most of these tumours show loss of the wild-type allele and, also, the mutations reduce FH enzyme activity, which indicate that FH is a tumour suppressor gene. The renal cell cancers associated with HLRCC are of rare papillary type 2 histology. Other genes involved in the Krebs cycle, which are also implicated in neoplasia are 3 of the 4 subunits encoding succinate dehydrogenase (SDH); mutations in SHDB, SDHC, and SDHD predispose to paraganglioma and phaeochromocytoma. Although uterine leiomyomas (or fibroids) are very common, the estimations of affected women ranging from 25% to 77%, not much is known about their genetic background. Cytogenetic studies have revealed that rearrangements involving chromosomes 6, 7, 12 and 14 are most commonly seen in fibroids. Deletions on the long arm of chromosome 7 have been reported to be involved in about 17 to 34 % of leiomyomas and the small commonly deleted region on 7q22 suggests that there might be an underlying tumour suppressor gene in that region. The purpose of this study was to investigate the genetic mechanisms behind the development of tumours associated with HLRCC, both renal cell cancer and uterine fibroids. Firstly, a database search at the Finnish cancer registry was conducted in order to identify new families with early-onset RCC and to test if the family history was compatible with HLRCC. Secondly, sporadic uterine fibroids were tested for deletions on 7q in order to define the minimal deleted 7q-region, followed by mutation analysis of the candidate genes. Thirdly, oligonucleotide chips were utilised to study the global gene expression profiles of uterine fibroids in order to test whether 7q-deletions and FH mutations significantly affected fibroid biology. In the screen for early-onset RCC, 214 families were identified. Subsequently, the pedigrees were constructed and clinical data obtained. One of the index cases (RCC at the age of 28) had a mother who had been diagnosed with a heart tumour, which in further investigation turned out to be a paraganglioma. This lead to an alternative hypothesis that SDH, instead of FH, could be involved. SDHA, SDHB, SDHC and SDHD were sequenced from these individuals; a germline SDHB R27X mutation was detected with loss of the wild-type allele in both tumours. These results suggest that germline mutations in the SDHB gene predispose to early-onset RCC establishing a novel form of hereditary RCC. This has immediate clinical implications in the surveillance of patients suffering from early-onset RCC and phaeochromocytoma/paraganglioma. For the studies on sporadic uterine fibroids, a set of 166 fibroids from 51 individuals were collected. The 7q LOH mapping defined a commonly deleted region of about 3.2 mega bases in 11 of the 166 tumours. The deletion was consistent with previously reported allelotyping studies of leiomyomas and it therefore suggested the presence of a tumour suppressor gene in the deleted region. Furthermore, the high-resolution aCGH-chip analysis refined the deleted region to only 2.79Mb. When combined with previous data, the commonly deleted region was only 2.3Mb. The mutation screening of the known genes within the commonly deleted region did not reveal pathogenic mutations, however. The expression microarray analysis revealed that FH-deficient fibroids, both sporadic and familial, had their distinct gene expression profile as they formed their own group in the unsupervised clustering. On the other hand, the presence or absence of 7q-deletions did not significantly alter the global gene expression pattern of fibroids, suggesting that these two groups do not have different biological backgrounds. Multiple differentially expressed genes were identified between FH wild-type and FH-mutant fibroids, and the most significant increase was seen in the expression of carbohydrate metabolism-related and hypoxia inducible factor (HIF) target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaucoma is the second leading cause of blindness worldwide. It is a group of optic neuropathies, characterized by progressive optic nerve degeneration, excavation of the optic disc due to apoptosis of retinal ganglion cells and corresponding visual field defects. Open angle glaucoma (OAG) is a subtype of glaucoma, classified according to the age of onset into juvenile and adult- forms with a cut-off point of 40 years of age. The prevalence of OAG is 1-2% of the population over 40 years and increases with age. During the last decade several candidate loci and three candidate genes, myocilin (MYOC), optineurin (OPTN) and WD40-repeat 36 (WDR36), for OAG have been identified. Exfoliation syndrome (XFS), age, elevated intraocular pressure and genetic predisposition are known risk factors for OAG. XFS is characterized by accumulation of grayish scales of fibrillogranular extracellular material in the anterior segment of the eye. XFS is overall the most common identifiable cause of glaucoma (exfoliation glaucoma, XFG). In the past year, three single nucleotide polymorphisms (SNPs) on the lysyl oxidase like 1 (LOXL1) gene have been associated with XFS and XFG in several populations. This thesis describes the first molecular genetic studies of OAG and XFS/XFG in the Finnish population. The role of the MYOC and OPTN genes and fourteen candidate loci was investigated in eight Finnish glaucoma families. Both candidate genes and loci were excluded in families, further confirming the heterogeneous nature of OAG. To investigate the genetic basis of glaucoma in a large Finnish family with juvenile and adult onset OAG, we analysed the MYOC gene in family members. Glaucoma associated mutation (Thr377Met) was identified in the MYOC gene segregating with the disease in the family. This finding has great significance for the family and encourages investigating the MYOC gene also in other Finnish OAG families. In order to identify the genetic susceptibility loci for XFS, we carried out a genome-wide scan in the extended Finnish XFS family. This scan produced promising candidate locus on chromosomal region 18q12.1-21.33 and several additional putative susceptibility loci for XFS. This locus on chromosome 18 provides a solid starting point for the fine-scale mapping studies, which are needed to identify variants conferring susceptibility to XFS in the region. A case-control and family-based association study and family-based linkage study was performed to evaluate whether SNPs in the LOXL1 gene contain a risk for XFS, XFG or POAG in the Finnish patients. A significant association between the LOXL1 gene SNPs and XFS and XFG was confirmed in the Finnish population. However, no association was detected with POAG. Probably also other genetic and environmental factors are involved in the pathogenesis of XFS and XFG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common known clearly hereditary cause of colorectal and endometrial cancer (CRC and EC). Dominantly inherited mutations in one of the known mismatch repair (MMR) genes predispose to HNPCC. Defective MMR leads to an accumulation of mutations especially in repeat tracts, presenting microsatellite instability. HNPCC is clinically a very heterogeneous disease. The age at onset varies and the target tissue may vary. In addition, families that fulfill the diagnostic criteria for HNPCC but fail to show any predisposing mutation in MMR genes exist. Our aim was to evaluate the genetic background of familial CRC and EC. We performed comprehensive molecular and DNA copy number analyses of CRCs fulfilling the diagnostic criteria for HNPCC. We studied the role of five pathways (MMR, Wnt, p53, CIN, PI3K/AKT) and divided the tumors into two groups, one with MMR gene germline mutations and the other without. We observed that MMR proficient familial CRC consist of two molecularly distinct groups that differ from MMR deficient tumors. Group A shows paucity of common molecular and chromosomal alterations characteristic of colorectal carcinogenesis. Group B shows molecular features similar to classical microsatellite stable tumors with gross chromosomal alterations. Our finding of a unique tumor profile in group A suggests the involvement of novel predisposing genes and pathways in colorectal cancer cohorts not linked to MMR gene defects. We investigated the genetic background of familial ECs. Among 22 families with clustering of EC, two (9%) were due to MMR gene germline mutations. The remaining familial site-specific ECs are largely comparable with HNPCC associated ECs, the main difference between these groups being MMR proficiency vs. deficiency. We studied the role of PI3K/AKT pathway in familial ECs as well and observed that PIK3CA amplifications are characteristic of familial site-specific EC without MMR gene germline mutations. Most of the high-level amplifications occurred in tumors with stable microsatellites, suggesting that these tumors are more likely associated with chromosomal rather than microsatellite instability and MMR defect. The existence of site-specific endometrial carcinoma as a separate entity remains equivocal until predisposing genes are identified. It is possible that no single highly penetrant gene for this proposed syndrome exists, it may, for example be due to a combination of multiple low penetrance genes. Despite advances in deciphering the molecular genetic background of HNPCC, it is poorly understood why certain organs are more susceptible than others to cancer development. We found that important determinants of the HNPCC tumor spectrum are, in addition to different predisposing germline mutations, organ specific target genes and different instability profiles, loss of heterozygosity at MLH1 locus, and MLH1 promoter methylation. This study provided more precise molecular classification of families with CRC and EC. Our observations on familial CRC and EC are likely to have broader significance that extends to sporadic CRC and EC as well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many of the genes predisposing to highly penetrant colorectal cancer (CRC) syndromes, including hereditary non-polyposis colorectal cancer (MLH1, MSH2, MSH6, PMS2), familial adenomatous polyposis (APC), Peutz-Jeghers syndrome (LKB1), juvenile polyposis (SMAD4, BMPR1A), MYH-associated polyposis (MYH), and Cowden syndrome (PTEN) have already been discovered. Identification of these genes has allowed a more precise classification of the hereditary CRC syndromes and provided a means for predictive genetic testing and surveillance. Some of the genes are also involved in sporadic cancer forms, and therefore the investigation of the rare CRC syndromes has been a breakthrough for general cancer research. Despite the accumulating knowledge on hereditary cancer syndromes, a significant number of familial CRCs remain molecularly unexplained after genetic testing, reflecting the possibility of other predisposing genes or existence of novel syndromes. Moreover, genetic variants conferring low-penetrance risk are still largely unknown. In this study, we examined the role of some new high- and low-penetrance alleles on CRC predisposition. We identified disease causing MYH mutations in a subset (9%) of patients with APC and AXIN2 mutation negative adenomatous polyposis. Due to differences in the pattern of inheritance and clinical manifestation, screening for mutations in MYH is beneficial in view of genetic counselling and surveillance. A novel functionally deficient MYH founder mutation A459D was identified in the Finnish population, and this finding had immediate clinical implications for genetic counselling of at risk families. Many patients with hamartomatous polyposis remain without molecular diagnosis due to atypical phenotypes. We therefore sought to classify 49 patients with unexplained hamartomatous or hyperplastic/mixed polyposis by extensive molecular analyses of PTEN, LKB1, BMPR1A, SMAD4, ENG, BRAF, MYH, and BHD along with revision of polyp histology. Mutations were identified in 11/49 (22%) of the patients. In 6 cases the molecular diagnosis was re-classified guiding surveillance and decisions for prophylactic surgery. Re-evaluation of polyp histology with subsequent more accurate selection of candidate gene analyses is beneficial and can be recommended for patients with unexplained polyposis. Furthermore, germline mutations in ENG underlying juvenile polyposis were described for the first time, characterizing a possible novel genetically defined form of hereditary CRC. Association analyses on two putative low-penetrance alleles, NOD2 3020insC and MDM2 SNP309 were performed in a population-based series of 1042 Finnish CRC patients and in cancer-free controls. In contrast to previous results, NOD2 3020insC did not associate with CRC or age at disease onset in the Finnish population. These data suggest that NOD2 3020insC alone might not be sufficient for CRC predisposition. MDM2 SNP309 was as common in the CRC cohort as in the healthy controls. Interesting trends, however, were observed, which after correction for multiple testing did not reach statistical significance. SNP309 was more common in female CRC patients and a trend towards an earlier age at disease onset was observed in women with SNP309. Subsequent studies have supported this observation and SNP309 could affect gender- or hormone-related tumorigenesis. Finally, a large-scale unbiased effort was designed to characterize the complete mutatome of CRC with microsatellite instability (MSI). Using an approach combining expression microarray and genome database searches, we were able to identify putative MSI target genes. Further characterization of one of the genes suggested that it might play a role also in microsatellite stable CRC and Peutz-Jeghers syndrome pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Positional cloning has enabled hypothesis-free, genome-wide scans for genetic factors contributing to disorders or traits. Traditionally linkage analysis has been used to identify regions of interest, followed by meticulous fine mapping and candidate gene screening using association methods and finally sequencing of regions of interest. More recently, genome-wide association analysis has enabled a more direct approach to identify specific genetic variants explaining a part of the variance of the phenotype of interest. Autism spectrum disorders (ASDs) are a group of childhood onset neuropsychiatric disorders with shared core symptoms but varying severity. Although a strong genetic component has been established in ASDs, genetic susceptibility factors have largely eluded characterization. Here, we have utilized modern molecular genetic methods combined with the advantages provided by the special population structure in Finland to identify genetic risk factors for ASDs. The results of this study show that numerous genetic risk factors exist for ASDs even within a population isolate. Stratification based on clinical phenotype resulted in encouraging results, as previously identified linkage to 3p14-p24 was replicated in an independent family set of families with Asperger syndrome, but no other ASDs. Fine-mapping of the previously identified linkage peak for ASDs at 3q25-q27 revealed association between autism and a subunit of the 5-hydroxytryptamine receptor 3C (HTR3C). We also used dense, genome-wide single nucleotide polymorphism (SNP) data to characterize the population structure of Finns. We observed significant population substructure which correlates with the known history of multiple consecutive bottle-necks experienced by the Finnish population. We used this information to ascertain a genetically homogenous subset of autism families to identify possible rare, enriched risk variants using genome-wide SNP data. No rare enriched genetic risk factors were identified in this dataset, although a subset of families could be genealogically linked to form two extended pedigrees. The lack of founder mutations in this isolated population suggests that the majority of genetic risk factors are rare, de novo mutations unique to individual nuclear families. The results of this study are consistent with others in the field. The underlying genetic architecture for this group of disorders appears highly heterogeneous, with common variants accounting for only a subset of genetic risk. The majority of identified risk factors have turned out to be exceedingly rare, and only explain a subset of the genetic risk in the general population in spite of their high penetrance within individual families. The results of this study, together with other results obtained in this field, indicate that family specific linkage, homozygosity mapping and resequencing efforts are needed to identify these rare genetic risk factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mulibrey nanism is a hereditary developmental disorder, characterized by prenatal onset growth failure without postnatal catch-up growth, distinctive craniofacial features, progressive cardiopathy and failure of sexual maturation. In addition, the patients develop insulin resistance syndrome and type 2 diabetes and they have an increased risk of developing tumors. The TRIM37 gene that underlies mulibrey nanism encodes for a member of the tripartite motif (TRIM) protein family. The physiological function of TRIM37 and the pathogenetic mechanisms leading from TRIM37 dysfunction to the mulibrey nanism phenotype are unknown. However, TRIM37 localizes at least partially to peroxisomes, and possesses ubiquitin E3-ligase activity. Thus, it may mediate ubiquitin dependent protein degradation, suggesting that accumulation of yet unknown substrate proteins may underlie the disease pathogenesis. In this study, the TRIM37 gene was characterized in detail. A transcription initiation window, with several separate transcription start sites, was identified and the putative promoter region immediately upstream from the transcription initiation window was shown to possess basal promoter activity. Further, several alternative splice variants of the gene were identified, including a highly expressed testis specific variant, encoding for an identical protein product with the main transcript. Expression of TRIM37 mRNA was detected in several different tissues, with highest expression seen in testis and in brain, when the expression patterns of the two major transcripts in different human tissues were studied by quantitative real-time PCR. Several mulibrey nanism patients were studied and thirteen novel mutations in TRIM37 were found, including three mutations (p.Gly322Val, p.Cys109Ser, p.Glu271_Ser287), that are likely to express mutant TRIM37 proteins. These mutations were further shown to alter the subcellular localization of the mutant proteins. Most of the mulibrey nanism associated mutations however, lead to premature termination codons and degradation of mRNA. All the TRIM37 mutations identified to date predict loss-of-function alleles, and thus no phenotype-genotype correlation is seen among the patients. In order to understand the pathogenetic mechanisms underlying mulibrey nanism, an animal model for the disorder is needed. For the development of a Trim37 knock-out mouse, the mouse Trim37 gene was characterized. Alternative splice variants, were identified, including a testis specific variant predicting a longer protein product. Further, a strictly tissue and cell-specific pattern of Trim37 expression was observed in developing and adult mouse tissues, when studied by immunohistochemical methods. This distribution of Trim37 expression in mouse tissues is in agreement with the clinical findings in human mulibrey nanism patients. This thesis work gives new tools for the diagnostics of mulibrey nanism as well as for studying the molecular pathogenesis behind this interesting disorder.