995 resultados para TESA-blot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we defined a new syndromic form of X-linked mental retardation in a 4-generation family with a unique clinical phenotype characterized by mild mental retardation, choreoathetosis, and abnormal behavior (MRXS10). Linkage analysis in this family revealed a candidate region of 13.4 Mb between markers DXS1201 and DXS991 on Xp11; therefore, mutation analysis was performed by direct sequencing in most of the 135 annotated genes located in the region. The gene (HADH2) encoding L-3-hydroxyacyl-CoA dehydrogenase II displayed a sequence alteration (c.574 C-->A; p.R192R) in all patients and carrier females that was absent in unaffected male family members and could not be found in 2,500 control X chromosomes, including in those of 500 healthy males. The silent C-->A substitution is located in exon 5 and was shown by western blot to reduce the amount of HADH2 protein by 60%-70% in the patient. Quantitative in vivo and in vitro expression studies revealed a ratio of splicing transcript amounts different from those normally seen in controls. Apparently, the reduced expression of the wild-type fragment, which results in the decreased protein expression, rather than the increased amount of aberrant splicing fragments of the HADH2 gene, is pathogenic. Our data therefore strongly suggest that reduced expression of the HADH2 protein causes MRXS10, a phenotype different from that caused by 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency, which is a neurodegenerative disorder caused by missense mutations in this multifunctional protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods: We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/ cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the avian model of myopia, retinal image degradation quickly leads to ocular enlargement. We now give evidence that regionally specific changes in ocular size are correlated with both biomechanical indices of scleral remodeling, e.g. hydration capacity and with biochemical changes in proteinase activities. The latter include a 72 kDa matrix metalloproteinase (putatively MMP-2), other gelatin-binding MMPs, an acid pH MMP and a serine protease. Specifically, we have found that increases in scleral hydrational capacity parallel increases in collagen degrading activities. Gelatin zymography reveals that eyes with 7 days of retinal image degradation have elevated levels (1.4-fold) of gelatinolytic activities at 72 and 67 kDa M(r) in equatorial and posterior pole regions of the sclera while, after 14 days of treatment, increases are no longer apparent. Lower M(r) zymographic activities at 50, 46 and 37 kDa M(r) are collectively increased in eyes treated for both 7 and 14 days (1.4- and 2.4-fold respectively) in the equator and posterior pole areas of enlarging eyes. Western blot analyses of scleral extracts with an antibody to human MMP-2 reveals immunoreactive bands at 65, 30 and 25 kDa. Zymograms incubated under slightly acidic conditions reveal that, in enlarging eyes, MMP activities at 25 and 28 kDa M(r) are increased in scleral equator and posterior pole (1.6- and 4.5-fold respectively). A TIMP-like protein is also identified in sclera and cornea by Western blot analysis. Finally, retinal-image degradation also increases (~2.6-fold) the activity of a 23.5 kDa serine proteinase in limbus, equator and posterior pole sclera that is inhibited by aprotinin and soybean trypsin inhibitor. Taken together, these results indicate that eye growth induced by retinal-image degradation involves increases in the activities of multiple scleral proteinases that could modify the biomechanical properties of scleral structural components and contribute to tissue remodeling and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection with erbB-2 (E) of Ha-ras (H) oncogene-transfected cells has been previously shown to cooperatively induce anchorage-independent growth of the MCF10A human mammary epithelial cell line in vitro, but not to induce nude mouse tumorigenicity. Here we show that oncogene-transformed MCF10A are able to halt in the lungs of nude mice, a sign of organ colonization potential. We have therefore studied the transformants for in vitro migratory and invasive properties known to correlate with the metastatic potential of human mammary carcinoma cells in nude mice. MCF10A transfected with Ha-ras, infected with a recombinant retroviral vector containing the human c-erB-2 proto-oncogene (MCF10A-HE cells), show a higher invasive index than either the single transfectant (MCF10A-H) or MCF10A-erB-2(MCF10A-E) cells in the Boyden chamber chemotaxis and chemoinvasion assays. The MCF10A-HE cells also adopted an invasive stellate growth pattern when plated or embedded in Matrigel, in contrast to the spherical colonies formed by the single transformants MCF10A-H, MCF10A-E, and the parental cells. Dot-blot analysis of gelatinase A and TIMP-2 mRNA levels revealed increasing gelatinase A mRNA levels (HE > E > H > MCF10A) and reduced TIMP-2 expression in both single and double transformants. Furthermore, MCF10A-HE cells show more MMP-2 activity than parental MCF10A cells or the single transformants. CD44 analysis revealed differential isoform banding for the MCF10A-HE cells compared to parental cells, MCF10A-H and MCF10A-E, accompanied by increased binding of hyaluronan by the double transformants. Our results indicate that erB-2 and Ha-ras co-expression can induce a more aggressive phenotype in vitro, representative of the malignancy of mammary carcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminin has been shown to promote the malignant phenotype and the expression of certain laminin receptors has been correlated with the malignant character of the tumors. Here new cell lines were isolated from a human colon cancer cell line (LCC-C1) based on their adhesiveness to laminin. The laminin-adherent subclone formed large tumors in nude mice, whereas the laminin-nonadherent subclone failed to form sizable tumors. Only the laminin-adherent subclone adhered to laminin and invaded through Matrigel-coated filters. The adhesive and invasive ability of the cells was almost completely blocked by low concentrations (1.0 μg/ml) of anti-β1 integrin antibody. The amounts of total cellular β1 integrin protein were similar in the two subclones when compared by Western blot, and the mRNA levels also did not differ. The localization of β1 integrin laminin receptor varied in the two subclones; the laminin-adherent subclone showed a linear distribution along the cell-cell junctions, while the laminin-nonadherent subclone did not stain between the cells. Using laminin-Sepharose affinity chromatography, more β1 integrin was obtained from the laminin-adherent subclone. These findings suggest that alterations in the affinity of β1 integrin for laminin and in its membrane distribution might be involved in the increased tumorigenicity observed in colon cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aims of the present study are to investigate the clinicopathological correlations of JK-1(FAM134B) expression and its relationship to carcinogenesis in a colorectal adenoma-adenocarcinoma model. JK-1(FAM134B) protein expression was studied in a colon cancer cell line by Western blot and immunocytochemistry. JK-1(FAM134B) expression profiles at mRNA and protein levels were investigated in cancer tissues from 236 patients with colorectal adenocarcinoma and 32 patients with colorectal adenoma using real-time polymerase chain reaction and immunohistochemistry. The findings were then correlated with the clinicopathological features of these tumours. JK-1(FAM134B) protein was demonstrated in the colon cancer cells by Western blot. The protein was located in the nuclei of the tumour cells at both cellular and tissue levels. In colorectal adenocarcinomas, lower levels of JK-1(FAM134B) protein expression were associated with younger age (p=0.032), larger tumour size (p=0.004), advanced cancer stages (p=0.016) and higher rates of cancer recurrence (p=0.04). Also, lower levels of JK-1(FAM134B) mRNA expression were associated with advanced cancer stages (p=0.02) and presence of lymphovascular invasion (p=0.014). Higher JK-1(FAM134B) mRNA and protein expression levels were identified in adenomas and non-neoplastic mucosae, compared to carcinomas (p=0.005). To conclude, JK-1(FAM134B) mRNA expression and JK1 (FAM134B) protein levels varied with the different stages of progression of colorectal tumours. The expression levels of the gene were associated with clinicopathological features in patients with colorectal adenocarcinoma suggesting that JK-1(FAM134B) gene has roles in controlling some steps in the development of the invasive phenotypes from colorectal adenoma to early staged as well as advanced staged colorectal adenocarcinomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemoresistance is a major therapeutic challenge to overcome in NSCLC, in order to improve the current survival rates of <15% at 5 years. We and others have shown increased PI3K signaling in NSCLC to be associated with a more aggressive disease, and a poorer prognosis. In this study, targeted inhibition of three strategic points of the PI3K–NFκB axis was performed with the aim of exploiting vulnerabilities in cisplatin-resistant NSCLC cells. Cisplatin-resistant cell lines were previously generated through prolonged exposure to the drug. Expression of PI3K and NFκB pathway-related genes were compared between cisplatin-resistant cells and their matched parent cells using a gene expression array, qRT-PCR, DNA sequencing, western blot, and immunofluorescence. Targeted inhibition was performed using GDC-0980, a dual PI3K–mTOR inhibitor currently in Phase II clinical trials in NSCLC, and DHMEQ, an inhibitor of NFκB translocation which has been used extensively both in vitro and in vivo. Effects of the two inhibitors were assessed by BrdU proliferation assay and multiparameter viability assay. NFKBIA was shown to be 12-fold overexpressed in cisplatin-resistant cells, with no mutations present in exons 3, 4, or 5 of the gene. Corresponding overexpression of IκBα was also observed. Treatment with DHMEQ (but not GDC-0980) led to significantly enhanced effects on viability and proliferation in cisplatin-resistant cells compared with parent cells. We conclude that NFκB inhibition represents a more promising strategy than PI3K–mTOR inhibition for treatment in the chemoresistance setting in NSCLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salinity is a major threat to sustainable agriculture worldwide. Plant NHX exchangers play an important role in conferring salt tolerance under salinity stress. In this study, a vacuolar Na+/H+ antiporter gene VrNHX1 (Genbank Accession No. JN656211.1) from mungbean (Vigna radiata) was introduced into cowpea (Vigna unguiculata) by the Agrobacterium tumefaciens-mediated transformation method. Polymerase chain reaction and Southern blot hybridization confirmed the stable integration of VrNHX1 into the cowpea genome. Comparative expression analysis by semi-quantitative RT-PCR revealed higher expression of VrNHX1 in transgenic cowpea plants than wild-type. Under salt stress conditions, T2 transgenic 35S:VrNHX1 cowpea lines exhibited higher tolerance to 200 mM NaCl treatment than wild-type. Furthermore, T2 transgenic 35S:VrNHX1 lines maintained a higher K+/Na+ ratio in the aerial parts under salt stress and accumulated higher [Na+] in roots than wild-type. Physiological analysis revealed lower levels of lipid peroxidation, hydrogen peroxide and oxygen radical production but higher levels of relative water content and proline, ascorbate and chlorophyll contents in T2 transgenic 35S:VrNHX1 lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acinetobacter baumannii is a multidrug-resistant pathogen associated with hospital outbreaks of infection across the globe, particularly in the intensive care unit. The ability of A. baumannii to survive in the hospital environment for long periods is linked to antibiotic resistance and its capacity to form biofilms. Here we studied the prevalence, expression, and function of the A. baumannii biofilm-associated protein (Bap) in 24 carbapenem-resistant A. baumannii ST92 strains isolated from a single institution over a 10-year period. The bap gene was highly prevalent, with 22/24 strains being positive for bap by PCR. Partial sequencing of bap was performed on the index case strain MS1968 and revealed it to be a large and highly repetitive gene approximately 16 kb in size. Phylogenetic analysis employing a 1,948-amino-acid region corresponding to the C terminus of Bap showed that BapMS1968 clusters with Bap sequences from clonal complex 2 (CC2) strains ACICU, TCDC-AB0715, and 1656-2 and is distinct from Bap in CC1 strains. By using overlapping PCR, the bapMS1968 gene was cloned, and its expression in a recombinant Escherichia coli strain resulted in increased biofilm formation. A Bap-specific antibody was generated, and Western blot analysis showed that the majority of A. baumannii strains expressed an ∼200-kDa Bap protein. Further analysis of three Bap-positive A. baumannii strains demonstrated that Bap is expressed at the cell surface and is associated with biofilm formation. Finally, biofilm formation by these Bap-positive strains could be inhibited by affinity-purified Bap antibodies, demonstrating the direct contribution of Bap to biofilm growth by A. baumannii clinical isolates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regeneration and growth of the human endometrium after shedding of the functional layer during menstruation depends on an adequate angiogenic response. We analysed the mRNA expression levels of all known vascular endothelial growth factor (VEGF) ligands and receptors in human endometrium collected in the menstrual and proliferative phases of the menstrual cycle. In addition, we evaluated the expression of VEGF-A, VEGF-R2 and NRP-1 at the protein level. Two periods of elevated mRNA expression of ligands and receptors were observed, separated by a distinct drop at cycle days (CDs) 9 and 10. Immunohistochemical staining showed that VEGF and VEGF-R2 were expressed in epithelial, stromal and endothelial cells. NRP-1 was mainly confined to stroma and blood vessels; only in late-proliferative endometrium, epithelial staining was also observed. Except for endothelial VEGF-R2 expression in CDs 6-8, there were no significant differences in the expression of VEGF, VEGF-R2 or NRP-1 in any of the cell compartments. In contrast, VEGF release by cultured human endometrium explants decreased during the proliferative phase. This output was significantly reduced in menstrual and early-proliferative endometrium by estradiol (E2) treatment. Western blot analysis indicated that part of the VEGF-A was trapped in the extracellular matrix (ECM). Changes in VEGF ligands and receptors were associated with elevated expression of the hypoxia markers HIF1 alpha and CA-IX in the menstrual and early proliferative phases. HIF1 alpha was also detected in late-proliferative phase endometrium. Our findings indicate that VEGF-A exerts its actions mostly during the first half of the proliferative phase. Furthermore, VEGF-A production appears to be triggered by hypoxia in the menstrual phase and subsequently suppressed toy estrogen during the late proliferative phase.