998 resultados para compression parallel
Resumo:
Test procedures for a pipelined bit-parallel IIR filter chip which maximally exploit its regularity are described. It is shown that small modifications to the basic architecture result in significant reductions in the number of test patterns required to test such chips. The methods used allow 100% fault coverage to be achieved using less than 1000 test vectors for a chip which has 12 bit data and coefficients.
Resumo:
The real time implementation of an efficient signal compression technique, Vector Quantization (VQ), is of great importance to many digital signal coding applications. In this paper, we describe a new family of bit level systolic VLSI architectures which offer an attractive solution to this problem. These architectures are based on a bit serial, word parallel approach and high performance and efficiency can be achieved for VQ applications of a wide range of bandwidths. Compared with their bit parallel counterparts, these bit serial circuits provide better alternatives for VQ implementations in terms of performance and cost. © 1995 Kluwer Academic Publishers.
Resumo:
We describe recent progress of an ongoing research programme aimed at producing computational science software that can exploit high performance architectures in the atomic physics application domain. We examine the computational bottleneck of matrix construction in a suite of two-dimensional R-matrix propagation programs, 2DRMP, that are aimed at creating virtual electron collision experiments on HPC architectures. We build on Ixaru's extended frequency dependent quadrature rules (EFDQR) for Slater integrals and examine the challenge of constructing Hamiltonian matrices in parallel across an m-processor compute node in a block cyclic distribution for subsequent diagonalization by ScaLAPACK.
Resumo:
This paper describes the fractographic analysis of five CFRP post-buckled skin/stringer panels that were tested to failure in compression. The detailed damage mechanisms for skin/stiffener detachment in an undamaged panel were characterised and related to the stress conditions during post-buckling; in particular the sites of peak twist (at buckling nodes) and peak bending moments (at buckling anti-nodes). The initial event was intralaminar splitting of the +45 degrees plies adjacent to the skin/stiffener interface, induced by high twist at a nodeline. This was followed by mode II delamination, parallel to +/- 45 degrees plies and then lengthwise (0 degrees) shear along the stiffener centreline. The presence of defects or damage was found to influence this failure process, leading to a reduction in strength. This research provides an insight into the processes that control post-buckled performance of stiffened panels and suggests that 2D models and element tests do not capture the true physics of skin/stiffener detachment: a full 3D approach is required.
Resumo:
Damage tolerant hat-stiffened thin-skinned composite panels with and without a centrally located circular cutout, under uniaxial compression loading, were investigated experimentally and analytically. These panels incorporated a highly postbuckling design characterised by two integral stiffeners separated by a large skin bay with a high width to skin-thickness ratio. In both configurations, the skin initially buckled into three half-wavelengths and underwent two mode-shape changes; the first a gradual mode change characterised by a central deformation with double curvature and the second a dynamic snap to five half-wavelengths. The use of standard path-following non-linear finite element analysis did not consistently capture the dynamic mode change and an approximate solution for the prediction of mode-changes using a Marguerre-type Rayleigh-Ritz energy method is presented. Shortcomings with both methods of analysis are discussed and improvements suggested. The panels failed catastrophically and their strength was limited by the local buckling strength of the hat stiffeners. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Recent efforts towards the development of the next generation of large civil and military transport aircraft within the European community have provided new impetus for investigating the potential use of composite material in the primary structure. One concern in this development is the vulnerability of co-cured stiffened structures to through-thickness stresses at the skin-stiffener interfaces particularly in stiffener runout regions. These regions are an inevitable consequence of the requirement to terminate stiffeners at cutouts, rib intersections or other structural features which interrupt the stiffener load path. In this respect, thickerskinned components are more vulnerable than thin-skinned ones. This work presents an experimental and numerical study of the failure of thick-sectioned stiffener runout specimens loaded in uniaxial compression. The experiments revealed that failure was initiated at the edge of the runout and propagated across the skin-stiffener interface. High frictional forces at the edge of the runout were also deduced from a fractographic analysis and it is postulated that these forces may enhance the fracture toughness of the specimens. Finite element analysis using an efficient thick-shell element and the Virtual Crack Closure Technique was able to qualitatively predict the crack growth characteristics for each specimen
Resumo:
The postbuckling behaviour of a panel with blade-stiffeners incorporating tapered flanges was experimentally investigated. A new failure mechanism was identified for this particular type of stiffener. Failure was initiated by mid-plane delamination at the free edge of the postbuckled stiffener web at a node-line. This was consistent with an interlaminar shear stress failure and was calculated from strain gauge measurements using an approximate analysis based on lamination theory and incorporating edge effects. The critical shear stress was found to agree well with the shear strength obtained from a three-point bending test of the web laminate.
Resumo:
A combined experimental and analytical study of a hat-stiffened carbon-fibre composite panel loaded in uniaxial compression was investigated. A buckling mode transition was observed in the panel's skin bay which was not captured using non-linear finite-element analysis. Good correlation between experimental and numerical strain and displacement results was achieved in the prebuckling and initial postbuckling region of the loading history. A Marguerre-type Rayleigh-Ritz energy method was applied to the skin bay using representative displacement functions of permissible mode shapes to explain the mode transition phenomenon. The central criterion of this method was based on the assumption that a change in mode shape occurred such that the total potential energy of the structure was maintained at a minimum. The ultimate strength of the panel was limited by the column buckling strength of the hat-stiffeners.
Resumo:
Most parallel computing applications in highperformance computing use the Message Passing Interface (MPI) API. Given the fundamental importance of parallel computing to science and engineering research, application correctness is paramount. MPI was originally developed around 1993 by the MPI Forum, a group of vendors, parallel programming researchers, and computational scientists. However, the document defining the standard is not issued by an official standards organization but has become a de facto standard © 2011 ACM.