997 resultados para Nuclear abnormalities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human nerve growth factor-induced B (NGFI-B) is a member of the NR4A subfamily of orphan nuclear receptors (NRs). Lacking identified ligands, orphan NRs show particular co-regulator proteins binding properties, different from other NRs, and they might have a non-classical quaternary organization. A body of evidence suggests that NRs recognition of and binding to ligands, DNA, homo- and heterodimerization partners and co-regulator proteins involve significant conformational changes of the NR ligand-binding domains (LBDs). To shed light on largely unknown biophysical properties of NGFI-B, here we studied structural organization and unfolding properties of NGFI-B ligand (like)-binding domain induced by chemical perturbation. Our results show that NGFI-B LBD undergoes a two-state guanidine hydrochloride (GndHCl) induced denaturation, as judged by changes in the a-helical content of the protein monitored by circular dichroism spectroscopy (CD). In contrast, changes in the tertiary structure of NGFI-B LBD, reported by intrinsic fluorescence, reveal a clear intermediate state. Additionally, SAXS results demonstrate that the intermediate observed by intrinsic fluorescence is a partially folded homodimeric structure, which further unfolds without dissociation at higher GndHCl concentrations. This partially unfolded dimeric assembly of NGFI-B LBD might resemble an intermediate that this domain access momentarily in the native state upon interactions with functional partners. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flavivirus NS5 protein is one of the most important proteins of the replication complex, and cellular proteins can interact with it. This study shows for the first time that the yellow fever virus (YFV) NS5 protein is able to interact with U1A, a protein involved in splicing and polyadenylation. We confirmed this interaction by GST-pulldown assay and by co-immunoprecipitation in YFV-infected cells. A region between amino acids 368 and 448 was identified as the site of interaction of the NS5 protein with U1A. This region was conserved among some flaviviruses of medical importance. The implications of this interaction for flavivirus replication are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3 `-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc 24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Delta ubc13 and Delta mms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shwachman-Bodian-Diamond syndrome protein (SBDS) is a member of a highly conserved protein family of not well understood function, with putative orthologues found in different organisms ranging from Archaea, yeast and plants to vertebrate animals. The yeast orthologue of SBDS, Sdo1p, has been previously identified in association with the 60S ribosomal subunit and is proposed to participate in ribosomal recycling. Here we show that Sdo1p interacts with nucleolar rRNA processing factors and ribosomal proteins, indicating that it might bind the pre-60S complex and remain associated with it during processing and transport to the cytoplasm. Corroborating the protein interaction data, Sdo1p localizes to the nucleus and cytoplasm and co-immunoprecipitates precursors of 60S and 40S subunits, as well as the mature rRNAs. Sdo1p binds RNA directly, suggesting that it may associate with the ribosomal subunits also through RNA interaction. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T(2)) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. RESULTS: The results show that injury in bananas causes a decrease in T(2) of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T(2) values, based on the reduction of Fe(3+) ions to Fe(2+) by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. CONCLUSION: As injury alters T(2) values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe(+3) and O(2) concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. (C) 2010 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLAs) are a group of linoleic acid isomers that are naturally found in food products originating from ruminants (meat and dairy). These acids have received special attention in recent years due to their potential human health benefits. Research efforts have been proposed to increase the CLA content in beef to improve public health. However, because there are more than 30 million beef cattle used each year by the American food industry, it will be necessary to ensure their content in a large number of samples. Therefore, it is important to have an inexpensive and rapid analytical method to measure CLA content in food products. Because gas chromatography (GC), a current popular method for measuring CLAs, is slow, this paper describes a nuclear magnetic resonance spectroscopy ((1)H NMR) method that is potentially >10 times faster than the GC method. Analyses show a correlation coefficient of 0.97, indicating the capacity of NMR to quantify the CLA content in beef samples. Furthermore, the method proposed herein is simple and does not require sophisticated sample preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and complete characterisation of the fluorescent ligand, 4-acridinol-1-sulphonic acid (the acridine analogue of 8-quinolinol-5-sulfonic acid) is described. Using a judicious array of nuclear magnetic resonance spectroscopy experiments, the structural elucidation and full assignment of all proton and carbon chemical shifts were afforded. The 4-acridinol-1-sulphonic acid was found to behave in a similar manner to 8-quinolinol-5-sulphonic acid, forming fluorescent complexes with magnesium(II) and zinc(II). The uncorrected emission maxima for the metal–acridinol complexes were found to be at around 620 nm compared to 505 nm for the respective quinolinol complexes. Unfortunately, preliminary spectrofluorimetric analytical figures of merit revealed that the detection limits of the new acridinol metal complexes were one and a half orders of magnitude poorer than those attained with the corresponding quinolinol ligand. However, in contrast to 8-quinolinol-5-sulphonic acid, the 4-acridinol-1-sulphonic acid ligand showed considerable selectivity for magnesium(II) and zinc(II) over aluminium(III).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nuclear exclusion appears in all general insurance policies. Since its introduction to Australia and New Zealand in the 1960s this exclusion has seen almost no change. So what are the reasons for this article? There are two reasons. First, there has been a misunderstanding on the part of some in the industry about the scope of this exclusion. This results in unnecessary alterations to the policy. The other is that a new wording is emerging some sections of the market which could be tar-reaching in its effect. The purpose of this article is to examine several aspects related to the exclusion. The first section examines the nature and extent of exposures in relation to radiation and nuclear energy and serves as background to under standing the exclusion wording. Section two provides the reasons for the inclusion of the clause and its historical origins. Section three addresses the intended scope of the current exclusion and the final section examines the scope of a new wording that is appearing and the possible implications that may result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model peroxyoxalate chemiluminescence system was monitored directly across a range of temperatures (from −80 to +20 °C) using 13C nuclear magnetic resonance spectroscopy. These experiments were made possible by the utilisation of 13C doubly labelled oxalyl chloride, which was reacted with anhydrous hydrogen peroxide in dry tetrahydrofuran. Ab initio quantum calculations were also performed to estimate the 13C nuclear magnetic resonance (NMR) shift of the most commonly postulated key intermediate 1,2-dioxetanedione and this data, in concert with the spectroscopic evidence, confirmed its presence during the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton nuclear magnetic resonance spectroscopy (NMR) has shown the potential for being a valuable tool in monitoring a commercial fermentation. In this preliminary study, a suite of organic analytes including ethanol, fructose, glucose, methanol, glycerol, malic acid, tartaric acid, succinic acid, acetic acid and lactic acid were simultaneously determined during the fermentation. Data collection and analysis using chemometric algorithms aided the understanding of key processes including the effects of seeding a wine with bacteria for malo-lactic fermentation.