947 resultados para dicer like enzyme 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS), which generally activates Toll-like receptor 4 (TLR4), is expressed on commensal colonic bacteria. In a number of tissues, LPS can act directly on epithelial cells to increase paracellular permeability. Such an effect in the colon would have an important impact on the understanding of normal homeostasis and of pathology. Our aim was to use a novel primary culture of colonic epithelial cells grown on Transwells to investigate whether LPS, or Pam(3)CSK( 4), an activator of TLR2, affected paracellular permeability. Consequently, [(14)C]-mannitol transfer and transepithelial electrical resistance (TEER) were measured. The preparation consisted primarily of cytokeratin-18 positive epithelial cells that produced superoxide, stained for mucus with periodic acid-Schiff reagent, exhibited alkaline phosphatase activity and expressed TLR2 and TLR4. Tight junctions and desmosomes were visible by transmission electron microscopy. Basally, but not apically, applied LPS from Escherichia coli increased the permeability to mannitol and to a 10-kDa dextran, and reduced TEER. The LPS from Helicobacter pylori increased paracellular permeability of gastric cells when applied either apically or basally, in contrast to colon cells, where this LPS was active only from the basal aspect. A pan-caspase inhibitor prevented the increase in caspase activity caused by basal E. coli LPS, and reduced the effects of LPS on paracellular permeability. Synthetic Pam(3)CSK(4) in the basal compartment prevented all effects of basal E. coli LPS. In conclusion, LPS applied to the base of the colonic epithelial cells increased paracellular permeability by a mechanism involving caspase activation, suggesting a process by which perturbation of the gut barrier could be exacerbated. Moreover, activation of TLR2 ameliorated such effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1 [1, 2]. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA [1, 3]. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity [4-6]. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals [4, 6-12]. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA [2, 13-15]. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production [1, 4, 16-18]. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1-DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porcine circovirus type 2 (PCV-2) has been found to be the causative agent of postweaning multisystemic wasting syndrome (PMWS). However, PCV-2 is a ubiquitous virus in the swine population and a majority of pigs infected with PCV-2 do not develop the disease. Different factors such as age, maintenance, the genetics of PCV-2, other pathogens, etc. have been suggested to contribute to the development of PMWS. However, so far no proven connection between any of these factors and the disease development has been found. In this study we explored the possible presence of other so far unknown DNA containing infectious agents in lymph nodes collected from Swedish pigs with confirmed PMWS through random amplification and high-throughput sequencing. Although the vast majority of the amplified genetic sequences belonged to PCV-2, we also found genome sequences of Torque Teno virus (TTV) and of a novel parvovirus. The detection of TTV was expected since like PCV-2, TTV has been found to have high prevalence in pigs around the world. We were able to amplify a longer region of the parvovirus genome, consisting of the entire NP1 and partial VP1/2. By comparative analysis of the nucleotide sequences and phylogenetic studies we propose that this is a novel porcine parvovirus, with genetic relationship to bocaviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

De nombreuses études ont bien démontré que l’activation du système rénine-angiotensine (RAS) joue un rôle important dans le développement de l’hypertension et de la néphropathie diabétique (DN). La découverte de l’enzyme de conversion de l’angiotensine-2 (ACE2) et l’identification du récepteur MAS, spécifique pour l’angiotensine 1-7 (Ang 1-7), ont permis d’identifier deux nouveaux membres du RAS. L’axe ACE2/Ang 1-7/MAS contrebalance les effets de l’axe ACE/Ang II/AT1. Plusieurs évidences impliquent la contribution du RAS intrarénal dans la DN. Des études réalisées dans notre laboratoire avec des souris transgéniques surexprimant l’angiotensinogène de rat dans les cellules de leurs tubules proximaux rénaux (RPTCs) ont permis de démontrer l’importance du RAS intrarénal dans l’induction de l’hypertension et les dommages rénaux. Nous avons également observé que l’expression rénale de l’ACE2 et les niveaux urinaires d’ANG 1-7 sont plus faibles chez les souris Akita (diabète de type 1) et qu’un traitement avec des bloqueurs du RAS permet de normaliser l’expression de l’ACE2 et de prévenir le développement de l’hypertension dans le modèle des souris Akita. Dans un milieu diabétique, à la fois la glycémie et l’angiotensine II (Ang II) peuvent induire la génération des espèces réactives de l’oxygène (ROS), contribuant ainsi aux dommages rénaux. Afin d’explorer la relation entre les ROS, ACE2 et la DN, nous avons créé des souris Akita transgéniques surexprimant la catalase (Cat) dans les RPTCs, en croisant des souris Akita diabétique de type 1 à notre modèle de souris transgéniques surexprimant la Cat de rat dans les RPTCs. Dans une seconde étude, des souris Akita ont été traitées avec l’Ang 1-7 ou une combinaison d’Ang 1-7 et de son antagoniste, A779, afin d’étudier la relation entre l’action de l’Ang 1-7, l’hypertension systolique (sHTN), le stress oxydatif, les dommages rénaux, ACE2 et l’expression du récepteur Mas. Nos résultats ont montré que la surexpression de Cat atténue le stress oxydatif rénal; prévient l’hypertension, améliore le taux de filtration glomérulaire, l’albuminurie, l’hypertrophie rénale, la fibrose tubulo-interstitielle et l’apoptose tubulaire; et supprime l’expression des gènes profibrotiques et proapoptotiques dans les RPTCs des souris Akita Cat-Tg lorsque comparées aux souris Akita. De plus, la surexpression de Cat dans les RPTC des souris Akita normalise l’expression rénale de l’ACE2 et les niveaux urinaires d’Ang 1-7. D’autre part, l’administration d’Ang 1-7 prévient l’hypertension systémique, normalise le ratio albumine/créatinine urinaire et atténue l’hyperfiltration glomérulaire des souris Akita, sans affecter la glycémie sanguine. De plus, le traitement avec l’Ang 1-7 atténue aussi le stress oxydatif et l’expression de la NADPH oxydase, Agt, ACE, TGF-β1 (transforming growth factor-β1) et collagène IV, tout en augmentant l’expression de l’ACE2 et du récepteur Mas dans les reins des souris Akita. Ces effets sont renversés par la co-admininstration d’A779. Ces résultats démontrent que la surexpression de Cat prévient l’hypertension et la progression de la néphropathie, en plus de mettre en lumière l’importance du stress oxydatif intrarénal et l’expression de l’ACE2 comme facteurs contribuant à l’hypertension et les dommages rénaux observés dans le diabète. En outre, nos données suggèrent que l’Ang 1-7 joue un rôle protecteur dans l’hypertension et les dommages aux RPTC dans le diabète, principalement en réduisant les voies de signalisations du stress oxydatif dans les reins et en normalisant l’expression de l’ACE2 et du récepteur Mas. Nos résultats indiquent aussi que l’Ang 1-7 pourrait agir comme un agent thérapeutique potentiel dans le traitement de l’hypertension systémique et les dommages rénaux observés dans le diabète. En conséquence, l’Ang 1-7 est responsable du rôle protecteur de l’ACE2 dans l’hypertension et la DN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fibrinogen-clotting enzyme, Jararacussin-I, was purified from the venom of Bothrops jararacussu by a combination of ion exchange chromatography using Resource 15S resin and affinity chromatography using Benzamidine Sepharose 6B resin. Jararacussin-I displays a molecular mass of 28 kDa as estimated by sodium dodecyl sulphate-PAGE and possesses an isoetectric point of 5.0. The coagulant specific activity of the enzyme was determined to be 45.8 NIH U/mg using bovine fibrinogen as the substrate and the esterase specific activity was determined to be 258.7 U/mg. The protease inhibitors, benzamidine and DTT inhibited the esterase specific activity by 72.4 and 69.7%, respectively. The optimal temperature and pH for the degradation of both chains of fibrinogen and esterase specific activity were determined to be 37 degreesC and 7.4-8.0, respectively. The enzyme was inactivated at both 4 and 75 T. Single crystals of Jararacussin-I were obtained and complete three-dimensional X-ray diffraction data was collected at the Brazilian National Synchrotron Source (LNLS) to a resolution of 2.4 Angstrom. (C) 2002 Published by Elsevier B.V. Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luciferyl adenylate, the key intermediate in beetle bioluminescence, is produced through adenylation of D-luciferin by beetle luciferases and also by mealworm luciferase-like enzymes which produce a weak red chemiluminescence. However, luciferyl adenylate is only weakly chemiluminescent in water at physiological pH and it is unclear how efficient bioluminescence evolved from its weak chemiluminescent properties. We found that bovine serum albumin (BSA) and neutral detergents enhance luciferyl adenylate chemiluminescence by three orders of magnitude, simulating the mealworm luciferase-like enzyme chemiluminescence properties. These results suggest that the beetle protoluciferase activity arose as an enhanced luciferyl adenylate chemiluminescence in the protein environment of the ancestral AMP-ligase. The predominance of luciferyl adenylate chemiluminescence in the red region under most conditions suggests that red luminescence is a more primitive condition that characterized the original stages of protobioluminescence, whereas yellow-green bioluminescence may have evolved later through the development of a more structured and hydrophobic active site. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom serine proteinases (SVSPs) are hemostatically active toxins that perturb the maintenance and regulation of both the blood coagulation cascade and fibrinolytic feedback system at specific points, and hence, are widely used as tools in pharmacological and clinical diagnosis. The crystal structure of a thrombin-like enzyme (TLE) from Bothrops jararacussu venom (Jararacussin-I) was determined at 2.48 Å resolution. This is the first crystal structure of a TLE and allows structural comparisons with both the Agkistrodon contortrix contortrix Protein C Activator and the Trimeresurus stejnegeri plasminogen activator. Despite the highly conserved overall fold, significant differences in the amino acid compositions and three-dimensional conformations of the loops surrounding the active site significantly alter the molecular topography and charge distribution profile of the catalytic interface. In contrast to other SVSPs, the catalytic interface of Jararacussin-I is highly negatively charged, which contributes to its unique macromolecular selectivity. © 2012 The Protein Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urm1 is a unique dual-function member of the ubiquitin protein family and conserved from yeast to man. It acts both as a protein modifier in ubiquitin-like urmylation and as a sulfur donor for tRNA thiolation, which in concert with the Elongator pathway forms 5-methoxy-carbonyl-methyl-2-thio (mcm5s2) modified wobble uridines (U34) in anticodons. Using Saccharomyces cerevisiae as a model to study a relationship between these two functions, we examined whether cultivation temperature and sulfur supply previously implicated in the tRNA thiolation branch of the URM1 pathway also contribute to proper urmylation. Monitoring Urm1 conjugation, we found urmylation of the peroxiredoxin Ahp1 is suppressed either at elevated cultivation temperatures or under sulfur starvation. In line with this, mutants with sulfur transfer defects that are linked to enzymes (Tum1, Uba4) required for Urm1 activation by thiocarboxylation (Urm1-COSH) were found to maintain drastically reduced levels of Ahp1 urmylation and mcm5s2U34 modification. Moreover, as revealed by site specific mutagenesis, the Stransfer rhodanese domain (RHD) in the E1-like activator (Uba4) crucial for Urm1-COSH formation is critical but not essential for protein urmylation and tRNA thiolation. In sum, sulfur supply, transfer and activation chemically link protein urmylation and tRNA thiolation. These are features that distinguish the ubiquitin-like modifier system Uba4•Urm1 from canonical ubiquitin family members and will help elucidate whether, in addition to their mechanistic links, the protein and tRNA modification branches of the URM1 pathway may also relate in function to one another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In plants, silencing of mRNA can be transmitted from cell to cell and also over longer distances from roots to shoots. To investigate the long-distance mechanism, WT and mutant shoots were grafted onto roots silenced for an mRNA. We show that three genes involved in a chromatin silencing pathway, NRPD1a encoding RNA polymerase IVa, RNA-dependent RNA polymerase 2 (RDR2), and DICER-like 3 (DCL3), are required for reception of long-distance mRNA silencing in the shoot. A mutant representing a fourth gene in the pathway, argonaute4 (ago4), was also partially compromised in the reception of silencing. This pathway produces 24-nt siRNAs and resulted in decapped RNA, a known substrate for amplification of dsRNA by RDR6. Activation of silencing in grafted shoots depended on RDR6, but no 24-nt siRNAs were detected in mutant rdr6 shoots, indicating that RDR6 also plays a role in initial signal perception. After amplification of decapped transcripts, DCL4 and DCL2 act hierarchically as they do in antiviral resistance to produce 21- and 22-nt siRNAs, respectively, and these guide mRNA degradation. Several dcl genotypes were also tested for their capacity to transmit the mobile silencing signal from the rootstock. dcl1-8 and a dcl2 dcl3 dcl4 triple mutant are compromised in micro-RNA and siRNA biogenesis, respectively, but were unaffected in signal transmission. © 2007 by The National Academy of Sciences of the USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DOUBLE-STRANDED RNA BIN DIN G (DRB) proteins have been functionally characterized in viruses, prokaryotes and eukaryotes and are involved in all aspects of RNA biology. Arabidopsis thaliana (Arabidopsis) encodes five closely related DRB proteins, DRB1 to DRB5. DRB1 and DRB4 are required by DICER-LIKE (DCL) proteins DCL1 and DCL4 to accurately and efficiently process structurally distinct double-stranded RNA (dsRNA) precursor substrates in the microRNA (miRNA) and trans-acting small-interfering RNA (tasiRNA) biogenesis pathways respectively. We recently reported that DRB2 is also involved in the biogenesis of specific miRNA subsets. Furthermore, the severity of the developmental phenotype displayed by the drb235 triple mutant plant, compared with those expressed by either drb2, drb3 and drb5 single mutants, or double mutant combinations thereof, indicates that DRB3 and DRB5 function in the same non-canonical miRNA pathway as DRB2. Through the use of our artificial miRNA (amiRNA) plant expression vector, pBlueGreen 2,3 we demonstrate here that unlike DRB2, DRB3 and DRB5 are not involved in the dsRNA processing stages of the miRNA biogenesis pathway, but are required to mediate RNA silencing of target genes of DRB2-associated miRNA s. © 2012 Landes Bioscience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dicers are associated with double-stranded RNA-binding proteins (dsRBPs) in animals. In the plant, Arabidopsis, there are four dicer-like (DCL) proteins and five potential dsRBPs. These DCLs act redundantly and hierarchically. However, we show there is little or no redundancy or hierarchy amongst the DRBs in their DCL interactions. DCL1 operates exclusively with DRB1 to produce micro (mi)RNAs, DCL4 operates exclusively with DRB4 to produce trans-acting (ta) siRNAs and 21nt siRNAs from viral RNA. DCL2 and DCL3 produce viral siRNAs without requiring assistance from any dsRBP. DRB2, DRB3 and DRB5 appear unnecessary for mi-, tasi-, viral si-, or heterochromatinising siRNA production but act redundantly in a developmental pathway. © 2008 Federation of European Biochemical Societies.