611 resultados para Recessive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital fiber-type disproportion myopathy causes impaired muscle maturation or development. It is characterized by moderate to severe hypotonia and generalized muscle weakness at birth or during the first year of life, especially in the lower extremities. It is inherited as an autosomal recessive, dominant and X-linked. It is diagnosed by clinical data confirmation, generalized hypotonia and a muscle biopsy in which muscle fibers type I are smaller in caliber, 12% smaller than those of type II and type I fibers are more common than type II. Treatment is multidisciplinary. The following describes the case of a patient who was born in the ‘‘Dr. José Eleuterio González’’ University Hospital in Monterrey, N.L, who presented clinical and muscle biopsy compatible with this myopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cystic fibrosis (CF) is the most prevalent lethal autosomal recessive disease with a broad spectrum of phenotypes. Mutation of ΔF508 in the CFTR gene is the most important and lethal mutation in CF, which contains 70% of all predisposing mutations for CF worldwide. Objectives: Determining frequency of genotypes with ΔF508 mutation in CFTR gene, and evaluation of correlation between genotype and phenotype of Iranian patients with CF. Patients and Methods: Thirty six patients were included in this cross sectional study. ΔF508 mutations in both alleles of the CFTR gene were checked. Results: Among 36 pediatric patients, ΔF508 mutation was detected in 9 (25%) patients; 2 patients were heterozygous, and 7 patients homozygous for this mutation. From overall 72 tracked alleles, 11 (15.2%) were found to have ΔF508 mutations. Differences in prevalence of dyspnea and bronchiectasis were significant in homozygote group, compared with non-mutated group for ΔF508. Conclusions: It seems that more ΔF508 mutated alleles lead to more severe symptoms of CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Infantile Onset Pompe Disease (IOPD) is a rare autosomal recessive neuromuscular disorder. It is associated with cardiomegaly, hypotonia, paresis, and death in the first year of life. Since 2006, following the use of Alglucosidase alfa as Enzyme Replacement Therapy (ERT), the patients’ survival is improved to a noticeable extent. Objectives: The purpose of this study is to examine the outcome of IOPD patients in South of Iran and the degree of responsiveness to ERT. Patients and Methods: All patients who were diagnosed with IOPD on the bases of clinical symptoms, and enzyme assay on dried blood spot, were included in the study; and were followed up regarding cardiac function, locomotor activity, and cognition. Results: Six patients with IOPD were identified. All these six patients suffered from Hypertrophic Cardiomyopathy (HCM). Four (67%) of them also had generalized hypotonia. Three patients expired during the first weeks due to severe respiratory infection. One of them also got involved with Acute Cardiopulmonary Failure while receiving the fifth dose of ERT; and expired. However, the remaining two patients had a significant improvement after the maximum of 117 weeks of following up both cardiac and locomotor findings. These two patients were the same patients who showed cardiac symptoms from the beginning but did not have generalized hypotonia. Conclusions: Although ERT has a significant effect on enhancing the survival of IOPD patients, it should be associated with meticulous heart-respiratory cares during the first months of treatment and preventing infection especially nosocomial infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: We describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth disease and more than 40 different mutations have been reported. The recessive Q163X mutation has been described in patients of Spanish ancestry, and a founder mutation in South American patients, originating in Spain has been demonstrated. Objective: we describe physical and histological features, and the molecular impact of mutation Q163X in a Colombian family. Methods: We report two female patients, daughters of consanguineous parents, with onset of symptoms within the first two years of life, developing severe functional impairment, without evidence of dysmorphic features, hoarseness or diaphragmatic paralysis. Electrophysiology tests showed a sensory and motor neuropathy with axonal pattern. Sequencing of GDAP1 gene was requested and the study identified a homozygous point mutation (c.487 C>T) in exon 4, resulting in a premature stop codon (p.Q163X). This result confirms the diagnosis of Charcot-Marie-Tooth disease, type 4A. Results: The patients were referred to Physical Medicine and Rehabilitation service, in order to be evaluated for ambulation assistance. They have been followed by Pulmonology service, for pulmonary function assessment and diaphragmatic paralysis evaluation. Genetic counseling was offered. The study of the genealogy of the patient, phenotypic features, and electrophysiological findings must be included as valuable tools in the clinical approach of the patient with Charcot-Marie-Tooth disease, in order to define a causative mutation. In patients of South American origin, the presence of GDAP1 gene mutations should be considered, especially the Q163X mutation, as the cause of CMT4A disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infantile Neuroaxonal Dystrophy (INAD1, MIM # 256600), is a rare autossomal recessive neurodegenerative disorder. The clinical picture is characterized by psychomotor regression and hypotonia, which progresses to spastic tetraplegia, visual impairment and dementia. Onset is within the first 2 years of life and death usually happens before the age of 10. In 2006, Morgan et al described that mutations in PLA2G6 gene localized in chromosome 22 (22q13), caused INAD1. Evidence showed that a large proportion of patients with infantile neuroaxonal dystrophy have a mutation in the PLA2G6 gene. A 36-years-old pregnant woman presented for obstetric follow up. It was the second pregnancy of this healthy, nonconsanguineous couple. Their 7 year-old daughter was affected with Infantile Neuroaxonal Dystrophy. Molecular testing was done in the child and, as a causal mutation was detected, it was possible to offer a specific prenatal diagnosis. The molecular study of PLA2G6 gene by amniocentesis showed the presence of a mutation in heterozygoty and the karyotype was normal for a female foetus. To our knowledge, this is the first molecular prenatal diagnosis of INAD1 in Portugal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

McArdle disease is an autosomal recessive disorder caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (or ‘myophosphorylase´), which catalyzes the first step of glycogen catabolism, releasing glucose-1-phosphate from glycogen deposits. As a result, muscle metabolism is impaired, leading to different degrees of exercise intolerance. Patients range from asymptomatic to severely affected, including in some cases limitations in activities of daily living. The PYGM gene codifies myophosphoylase and to date 147 pathogenic mutations and 39 polymorphisms have been reported. Exon 1 and 17 are mutational hot-spots in PYGM and 50% of the described mutations are missense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The m-AAA protease is a hexameric complex involved in processing of specific substrates and turnover of misfolded polypeptides in the mitochondrial inner membrane. In humans, the m-AAA protease is composed of AFG3L2 and paraplegin. Mutations in AFG3L2 have been implicated in dominant spinocerebellar ataxia (SCA28) and recessive spastic ataxia-neuropathy syndrome (SPAX5). Mutations of SPG7, encoding paraplegin, are linked to hereditary spastic paraplegia. In the mouse, a third subunit AFG3L1 is expressed. Various mouse models recapitulate the phenotype of these neurodegenerative disorders, however, the pathogenic mechanism of neurodegeneration is not completely understood. Here, we studied several mouse models and focused on cell-autonomous role of the m-AAA protease in neurons and myelinating cells. We show that lack of Afg3l2 triggers mitochondrial fragmentation and swelling, tau hyperphosphorylation and pathology in Afg3l2 full-body and forebrain neuron-specific knockout mice. Moreover, deletion of Afg3l2 in adult myelinating cells causes early-onset mitochondrial abnormalities as in the neurons, but the survival of these cells is not affected, which is a contrast to early neuronal death. Despite the fact that myelinating cells have been previously shown to survive respiratory deficiency by glycolysis, total ablation of the m-AAA protease by deleting Afg3l2 in an Afg3l1 null background (DKO), leads to myelinating cell demise and subsequently progressive axonal demyelination. Interestingly, DKO mice show premature hair greying due to loss of melanoblasts. Together, our data demonstrate cell-autonomous survival thresholds to m-AAA protease deficiency, and an essential role of the m-AAA protease to prevent cell death independent from mitochondrial dynamics and the oxidative capacity of the cell. Thus, our findings provide novel insights to the pathogenesis of diseases linked to m-AAA protease deficiency, and also establish valuable mitochondrial dysfunctional mouse models to study other neurodegenerative diseases, such as tauopathies and demyelinating diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ojoplano (opo) is a vertebrate-specific gene that was first identified in medaka fish as a recessive mutant, showing both neural crest defects and a failure of optic cup folding. In humans, this gene is associated with genetic diseases including hereditary craniofacial malformations and schizophrenia. It is localized in a 2Mb gene desert flanked by insulator sequences, between the genes SLC35B and TFAp2a. This region, syntenic between all vertebrates, represents only 2% of chromosome 6. However, it includes 23% of the all conserved cis-regulatory elements in this chromosome. Using transgenesis assays in zebrafish, we screened the enhancer activity of this locus and obtain a collection of nine enhancers. These regulatory elements were all conserved from human to teleosts and showed epigenetic marks for enhancer activity. We could associate multiple enhancers with ororfacial celfting disease and in order to explore the functionality of the enhancers, we performed a bioinformatics analysis to search for transcription factor bindings in the enhancer sequences. In terms of gene regulation we observe that H6:10137 opo enhancer has two Vsx2 binding sites and that this transcription factor regulates the expression of opo during eye development. Our findings suggest that the regulation of Vsx2 over opo is essential for optic cup folding. So far, there is no clear connection between optic cup patterning and morphogenesis. Vsx2 provides this link by controlling the expression of opo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCCIÓN. La distrofia muscular de Duchenne es una enfermedad neuromuscular con una herencia recesiva ligada al X que afecta a 1 de cada 3500 niños nacidos vivos. Se produce por mutaciones en el gen DMD que codifica para la distrofina. Se caracteriza por manifestaciones clínicas variables típicas de una distrofia muscular proximal progresiva. OBJETIVO. Realizar el primer registro en Colombia de los pacientes identificados con distrofinopatías, teniendo en cuenta características clínicas y paraclínicas, así como las mutaciones causales de esta patología. METODOLOGÍA Es un estudio descriptivo, transversal, de la revisión de historias clínicas de los pacientes con diagnóstico de DMD atendidos en la consulta de Genética de la Universidad del Rosario durante los años 2006 a 2015. RESULTADOS Se identificaron 99 pacientes, de los cuales 56 (56,56%) corresponden al fenotipo Duchenne y 12 (12,12%) al Becker. No fue posible clasificar a 31 pacientes (31,3%) por falta de datos clínicos. La edad de inicio de los síntomas fue en promedio de 4,41 años. Las mutaciones más frecuentes fueron las deleciones (69%), seguidas por las mutaciones puntuales(14%), las duplicaciones (11%) y por otras mutaciones (4%). CONCLUSIONES Este registro de distrofinopatías es el primero reportado en Colombia y el punto de partida para conocer la incidencia de la enfermedad, caracterización clínica y molecular de los pacientes, garantizando así el acceso oportuno a los nuevos tratamientos de medicina de precisión que permitan mejorar la calidad de vida de los pacientes y sus familias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se describe la variante homocigota c.320-2A>G de TGM1 en dos hermanas con ictiosis congénita autosómica recesiva. El clonaje de los transcritos generados por esta variante permitió identificar tres mecanismos moleculares de splicing alternativos.