990 resultados para gene cloning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Histone H2A is reported to participate in host defense response through producing novel antimicrobial peptides (AMPs) from its N-terminus in vertebrates and invertebrates, while the AMPs derived from H2A have not to our knowledge been reported in mollusca. In the present study, gene cloning, mRNA expression of H2A from scallop Chlamys farreri, and the recombinant expression of its N-terminus were conducted to investigate whether a similar mechanism exists in mollusca. The full-length DNA of H2A was identified by the techniques of homology cloning and genomic DNA walking, The full-length DNA of the scallop H2A was 696 bp long, including a 5'-terminal untranslated region (UTR) of 90 bp, a 3'-terminal UTR of 228 bp with a stem-loop structure and a canonical polyadenylation signal sequence AATAAA, and an open reading frame of 375 bp encoding a polypeptide of 125 amino acids. The mRNA expression of H2A in the hemocytes of scallop challenged by microbe was measured by semi-quantitative RT-PCR. The expression of H2A was not upregulated after stimulation, suggesting that H2A did not participate in immunity response directly. The DNA fragment of 117 bp encoding 39 amino acids corresponding to the N-terminus of scallop H2A, which was homologous to buforin I in vertebrates, was cloned into Pichia pastoris GS115. The transformants (His(+) Mut(+)) containing multi-copy gene insertion were selected with increasing concentration of antibiotic G418. The peptide of 39 amino acids was expressed by induction of 0.5% methanol. The recombinant product exerted antibacterial activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria. The antibacterial activity toward G(+) bacteria was 2.5 times more than that against G(-) bacteria. The results elucidated that N-terminus of H2A was a potential AMP and provided a promising candidate for a new antibiotic screening. However, whether H2A is really involved in scallop immune response mechanisms needs to be further investigated. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3.4. Lipase (EC-3.1. 1.3) 3.5. Other Known Enzymes 3.6. Extremozymes (Enzymes from extremophiles) 3.7. Recognition of Valuable Extremozymes 4. Enzymes as Tools in Biotechnology 4.1. Restriction Enzymes from Marine Bacteria 4.2. Other Nucleases from Marine Bacteria 4.3. Bacteriolytic Enzyme by Bacteriophage from Seawater 5. Innovations in Enzyme Technology 5.1. Enzyme Engineering 5.2. Immobilization Technology 5.3. Gene Cloning for Marine Enzymes 6. Future Prospects

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La Fibrosis Quística es la enfermedad autosómica recesiva mas frecuente en caucásicos. En Colombia no se conoce la incidencia de la enfermedad, pero investigaciones del grupo de la Universidad del Rosario indican que podría ser relativamente alta. Objetivo: Determinar la incidencia de afectados por Fibrosis Quística en una muestra de recién nacidos de la ciudad de Bogotá. Metodología: Se analizan 8.297 muestras de sangre de cordón umbilical y se comparan tres protocolos de tamizaje neonatal: TIR/TIR, TIR/DNA y TIR/DNA/TIR. Resultados: El presente trabajo muestra una incidencia de 1 en 8.297 afectados en la muestra analizada. Conclusiones: Dada la relativamente alta incidencia demostrada en Bogotá, se justifica la implementación de Tamizaje Neonatal para Fibrosis Quística en Colombia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cupin superfamily is a group of functionally diverse proteins that are found in all three kingdoms of life, Archaea, Eubacteria, and Eukaryota. These proteins have a characteristic signature domain comprising two histidine- containing motifs separated by an intermotif region of variable length. This domain consists of six beta strands within a conserved beta barrel structure. Most cupins, such as microbial phosphomannose isomerases (PMIs), AraC- type transcriptional regulators, and cereal oxalate oxidases (OXOs), contain only a single domain, whereas others, such as seed storage proteins and oxalate decarboxylases (OXDCs), are bi-cupins with two pairs of motifs. Although some cupins have known functions and have been characterized at the biochemical level, the majority are known only from gene cloning or sequencing projects. In this study, phylogenetic analyses were conducted on the conserved domain to investigate the evolution and structure/function relationships of cupins, with an emphasis on single- domain plant germin-like proteins (GLPs). An unrooted phylogeny of cupins from a wide spectrum of evolutionary lineages identified three main clusters, microbial PMIs, OXDCs, and plant GLPs. The sister group to the plant GLPs in the global analysis was then used to root a phylogeny of all available plant GLPs. The resulting phylogeny contained three main clades, classifying the GLPs into distinct subfamilies. It is suggested that these subfamilies correlate with functional categories, one of which contains the bifunctional barley germin that has both OXO and superoxide dismutase (SOD) activity. It is proposed that GLPs function primarily as SODs, enzymes that protect plants from the effects of oxidative stress. Closer inspection of the DNA sequence encoding the intermotif region in plant GLPs showed global conservation of thymine in the second codon position, a character associated with hydrophobic residues. Since many of these proteins are multimeric and enzymatically inactive in their monomeric state, this conservation of hydrophobicity is thought to be associated with the need to maintain the various monomer- monomer interactions. The type of structure-based predictive analysis presented in this paper is an important approach for understanding gene function and evolution in an era when genomes from a wide range of organisms are being sequenced at a rapid rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nuclear hormone receptors comprise a characteristic family of transcription factors found in vertebrates, insects and nematodes. Here we show by cDNA and gene cloning that a Cnidarian, Tripedalia cystophora, possesses a retinoid receptor (jRXR) with remarkable homology to vertebrate retinoic acid X receptors (RXRs). Like vertebrate RXRs, jRXR binds 9-cis retinoic acid (Kd = 4 × 10−10 M) and binds to the DNA sequence, PuGGTCA as a monomer in vitro. jRXR also heterodimerizes with Xenopus TR beta on a thyroid responsive element of a direct repeat separated by 4 bp. A jRXR binding half-site capable of interacting with (His6)jRXR fusion protein was identified in the promoters of three T. cystophora crystallin genes that are expressed highly in the eye lens of this jellyfish. Because crystallin gene expression is regulated by retionoid signaling in vertebrates, the jellyfish crystallin genes are candidate in vivo targets for jRXR. Finally, an antibody prepared against (His6)jRXR showed that full-length jRXR is expressed at all developmental stages of T. cystophora except the ephydra, where a smaller form replaces is. These data show that Cnidaria, a diploblastic phylum ancestral to the triploblastic invertebrate and subsequent vertebrate lineages, already have an RXR suggesting that RXR is an early component of the regulatory mechanisms of metazoa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa polypeptide that has a putative topology of six alpha-helical transmembrane segments in the N-terminal hydrophobic domain, followed by a hydrophilic domain containing the ATP-binding site. LmrA is similar to each of the two halves of MDR1 and may function as a homodimer. The sequence conservation between LmrA and MDR1 includes particular regions in the transmembrane domains and connecting loops, which, in MDR1 and the MDR1 homologs in other mammalian species, have been implicated as determinants of drug recognition and binding. LmrA and MDR1 extrude a similar spectrum of amphiphilic cationic compounds, and the activity of both systems is reversed by reserpine and verapamil. As LmrA can be functionally expressed in E. coli, it offers a useful prokaryotic model for future studies on the molecular mechanism of MDR1-like multidrug transporters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The shrimp aquaculture industry is a relatively new livestock industry, having developed over the past 30 years. Thus, it is poised to take advantage of new technologies from the outset of selective breeding programs. This contrasts with long established livestock industries, where there are already highly specialised breeds. This review focuses specifically on the potential application of microarrays to shrimp breeding. Potential applications of microarrays in selective breeding programs are summarised. Microarrays can be used as a rapid means to generate molecular markers for genetic linkage mapping, and genetic maps have been constructed for yeast, Arabidopsis and barley using microarray technology. Microarrays can also be used in the hunt for candidate genes affecting particular traits, leading to development of perfect markers for these traits (i.e. causative mutations). However, this requires that microarray analysis be combined with genetic linkage mapping, and that substantial genomic information is available for the species in question. A novel application of microarrays is to treat gene expression as a quantitative trait in itself and to combine this with linkage mapping to identify quantitative trait loci controlling the levels of gene expression; this approach may identify higher level regulatory genes in specific pathways. Finally, patterns of gene expression observed using microarrays may themselves be treated as phenotypic traits in selection programs (e.g. a particular pattern of gene expression might be indicative of a disease tolerant individual). Microarrays are now being developed for a number of shrimp species in laboratories around the world, primarily with a focus on identifying genes involved in the immune response. However, at present, there is no central repository of shrimp genomic information, which limits the rate at which shrimp genomic research can be progressed. The application of microarrays to shrimp breeding will be extremely limited until there is a shared repository of genomic information for shrimp, and the collective will and resources to develop comprehensive genomic tools for shrimp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A key component of the venom of many Australian snakes belonging to the elapid family is a toxin that is structurally and functionally similar to that of the mammalian prothrombinase complex. In mammals, this complex is responsible for the cleavage of prothrombin to thrombin and is composed of factor Xa in association with its cofactors calcium, phospholipids, and factor Va. The snake prothrombin activators have been classified on the basis of their requirement for cofactors for activity. The two major subgroups described in Australian elapid snakes, groups C and D, are differentiated by their requirement for mammalian coagulation factor Va. In this study, we describe the cloning, characterization, and comparative analysis of the factor X- and factor V-like components of the prothrombin activators from the venom glands of snakes possessing either group C or D prothrombin activators. The overall domain arrangement in these proteins was highly conserved between all elapids and with the corresponding mammalian clotting factors. The deduced protein sequence for the factor X-like protease precursor, identified in elapids containing either group C or D prothrombin activators, demonstrated a remarkable degree of relatedness to each other (80%-97%). The factor V-like component of the prothrombin activator, present only in snakes containing group C complexes, also showed a very high degree of homology (96%-98%). Expression of both the factor X- and factor V-like proteins determined by immunoblotting provided an additional means of separating these two groups at the molecular level. The molecular phylogenetic analysis described here represents a new approach for distinguishing group C and D snake prothrombin activators and correlates well with previous classifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deterioration of enhanced biological phosphorus removal (EBPR) has been linked to the proliferation of glycogen-accumulating organisms (GAOs), but few organisms possessing the GAO metabolic phenotype have been identified. An unidentified GAO was highly enriched in a laboratory-scale bioreactor and attempts to identify this organism using conventional 16S rRNA gene cloning had failed. Therefore, rRNA-based stable isotope probing followed by full-cycle rRNA analysis was used to specifically identify the putative GAOs based on their characteristic metabolic phenotype. The study obtained sequences from a group of Alphaproteobacteria not previously shown to possess the GAO phenotype, but 90% identical by 16S rRNA gene analysis to a phylogenetic clade containing cloned sequences from putative GAOs and the isolate Defluvicoccus vanus. Fluorescence in situ hybridization (FISH) probes (DF988 and DF1020) were designed to target the new group and post-FISH chemical staining demonstrated anaerobic-aerobic cycling of polyhydroxyalkanoates, as per the GAO phenotype. The successful use of probes DF988 and DF1020 required the use of unlabelled helper probes which increased probe signal intensity up to 6.6-fold, thus highlighting the utility of helper probes in FISH. The new group constituted 33% of all Bacteria in the lab-scale bioreactor from which they were identified and were also abundant (51 and 55% of Bacteria) in two other similar bioreactors in which phosphorus removal had deteriorated. Unlike the previously identified Defluvicoccus-related organisms, the group identified in this study were also found in two full-scale treatment plants performing EBPR, suggesting that this group may be industrially relevant.