331 resultados para MS2 bacteriophage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

fA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. fA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also fA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous fA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully fA1122 resistant. Our data thus conclusively demonstrated that the fA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific 14 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 x 10(6) PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 x 10(3) PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 x 10(3) PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR)-based biosensor is a popular platform for real-time monitoring and sensitive detection for a myriad of targets. However, only a few studies have reported the use of bacteriophages as specific binders for SPR-based detection. This study aimed to demonstrate how filamentous M13 bacteriophages expressing 12-mer peptides can be employed in an SPR-based assay, using a Salmonella-specific bacteriophage as a model binder to detect the foodborne bacterium Salmonella. Several important factors (immobilization buffers and methods, and interaction buffers) for a successful bacteriophage-based SPR assay were optimized. As a result, a Salmonella-specific bacteriophage-based SPR assay was achieved, with very low cross reactivity with other non-target foodborne pathogens and detection limits of 8.0 × 107 and 1.3 × 107 CFU/mL for one-time and five-time immobilized sensors, respectively. This proof-of-concept study demonstrates the feasibility of using M13 bacteriophages expressing target-specific peptides as a binder in a rapid and label-free SPR assay for pathogen detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravel aquifers act as important potable water sources in central western Europe yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers Escherichia coli and Pseudomonas putida, was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E. coli relative recoveries could exceed those of H40/1 at monitoring wells 10 m and 20 m from an injection well by almost four times; P. putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged E. coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P. putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Medicina (Medicina Interna), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Microbiologia), Universidade de Lisboa, Faculdade de Farmácia, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of cDNA from RNA is challenging due to the inefficiency of reverse transcription (RT). In order to address this, a method was developed known as RT-Bst for sequential RT of RNA and Bst DNA polymerase amplification for enrichment of cDNA in a single tube reaction. Using genomic RNA from bacteriophage MS2, the yield of cDNA produced by RT alone and RT-Bst were compared by analysis of PCR-amplified products. Using random primers a superior performance was observed when amplifying MS2 RNA following RT-Bst compared to RT alone, indicating that greater quantities of cDNA were present after RT-Bst. RT-Bst was also compared with RT alone for their relative ability to produce sufficient cDNA to amplify 8 target regions spanning the respiratory syncytial virus (RSV) genome. Six out of 8 targets were amplified consistently by PCR subsequent to RT-Bst amplification whereas only 3 out of 8 targets could be amplified after RT alone. RSV sequences were selectively amplified using RSV specific primers from a mixed template containing an excess of MS2 RNA in a RT-Bst reaction without amplifying MS2 sequences. This suggests that RT-Bst can be used to amplify RNA sequences non-specifically using random primers and specifically using sequence specific primers and enhances the yield of cDNA when compared to RT alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of hand hygiene in reducing the spread of pathogens has been long established and this has been highlighted recently in initiatives such as the NHS’s ‘clean your hands’ campaign. However, much of the focus on hand hygiene has concerned effective hand washing; there has been less emphasis on hand drying and its role in hygienic practices. This study aimed to compare three hand drying methods namely paper towels, a warm air dryer and a jet air dryer for their relative ability to disseminate virus particles into the washroom environment during hand drying. A bacteriophage model was used to compare these methods; hands were artificially contaminated with MS2 phage and dried using each device. Both air sampling and contact plates were assessed and a plaque assay was used to quantify virus dissemination. Samples were collected at set times, heights, angles and distances around each device. Both air sampling and contact plate results indicated that the jet air dryer produced significantly more virus dispersal than either paper towels or the warm air dryer in terms of quantity, distance travelled and the time spent circulating in the air around the device and potentially in the washroom environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background World Health Organization hand hygiene guidelines state that if electric hand dryers are used, they should not aerosolize pathogens. Previous studies have investigated the dispersal by different hand-drying devices of chemical indicators, fungi and bacteria on the hands. This study assessed the aerosolization and dispersal of virus on the hands to determine any differences between hand-drying devices in their potential to contaminate other occupants of public washrooms and the washroom environment. Methods A suspension of MS2, an Escherichia coli bacteriophage virus, was used to artificially contaminate the hands of participants prior to using three different handdrying devices: jet air dryer, warm air dryer, paper towel dispenser. Virus was detected by plaque formation on agar plates layered with the host bacterium. Vertical dispersal of virus was assessed at a fixed distance (0.4 m) and over a range of different heights (0.0 – 1.8 m) from the floor. Horizontal dispersal was assessed at different distances of up to three metres from the hand-drying devices. Virus aerosolization and dispersal was also assessed at different times up to 15 minutes after use by means of air sampling at two distances (0.1 and 1.0 m) and at a distance behind and offset from each of the hand-drying devices. Results Over a range of heights, the jet air dryer was shown to produce over 60 times greater vertical dispersal of virus from the hands than a warm air dryer and over 1300 times greater than paper towels; the maximum being detected between 0.6 and 1.2 metres from the floor. Horizontal dispersal of virus by the jet air dryer was over 20 times greater than a warm air dryer and over 190 times greater than paper towels; virus being detected at distances of up to three metres. Air sampling at three different positions from the hand-drying devices 15 minutes after use showed that the jet air dryer produced over 50-times greater viral contamination of the air than a warm air dryer and over 110-times greater than paper towels. Conclusions Due to their high air speed, jet air dryers aerosolize and disperse more virus over a range of heights, greater distances, and for longer times than other hand drying devices. If hands are inadequately washed, they have a greater potential to contaminate other occupants of a public washroom and the washroom environment. Main messages: Jet air dryers with claimed air speeds of over 600 kph have a greater potential than warm air dryers or paper towels to aerosolize and disperse viruses on the hands of users. The choice of hand-drying device should be carefully considered. Jet air dryers may increase the risk of transmission of human viruses, such as norovirus, particularly if hand washing is inadequate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background World Health Organization and EU hand hygiene guidelines state that if electric hand dryers are used, they should not aerosolize pathogens. Previous studies have investigated the dispersal by different hand-drying devices of chemical indicators, fungi and bacteria on the hands. This study assessed the aerosolization and dispersal of virus on the hands to determine any differences between hand-drying devices in their potential to contaminate other occupants of public washrooms and the washroom environment. Methods A suspension of MS2, an Escherichia coli bacteriophage virus, was used to artificially contaminate the hands of participants prior to using three different hand-drying devices: jet air dryer, warm air dryer, paper towel dispenser. Virus was detected by plaque formation on agar plates layered with the host bacterium. Vertical dispersal of virus was assessed at a fixed distance (0.4 m) and over a range of different heights (0.0 – 1.8 m) from the floor. Horizontal dispersal was assessed at different distances of up to three metres from the hand-drying devices. Virus aerosolization and dispersal was also assessed at different times up to 15 minutes after use by means of air sampling at two distances (0.1 and 1.0 m) and at a distance behind and offset from each of the hand-drying devices. Results Over a range of heights, the jet air dryer was shown to produce over 60 times greater vertical dispersal of virus from the hands than a warm air dryer and over 1300 times greater than paper towels; the maximum being detected between 0.6 and 1.2 metres from the floor. Horizontal dispersal of virus by the jet air dryer was over 20 times greater than a warm air dryer and over 190 times greater than paper towels; virus being detected at distances of up to three metres. Air sampling at three different positions from the hand-drying devices 15 minutes after use showed that the jet air dryer produced over 50-times greater viral contamination of the air than a warm air dryer and over 110-times greater than paper towels. Conclusions Due to their high air speed, jet air dryers aerosolize and disperse more virus over a range of heights, greater distances, and for longer times than other hand drying devices. If hands are inadequately washed, they have a greater potential to contaminate other occupants of a public washroom and the washroom environment. Main messages: Jet air dryers with claimed air speeds of over 600 kph have a greater potential than warm air dryers or paper towels to aerosolize and disperse viruses on the hands of users. The choice of hand-drying device should be carefully considered. Jet air dryers may increase the risk of transmission of human viruses, such as norovirus, particularly if hand washing is inadequate.