993 resultados para base pairing


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complementary sequences at the 5′ and 3′ ends of the dengue virus RNA genome are essential for viral replication, and are believed to cyclise the genome through long-range base pairing in cis. Although consistent with evidence in the literature, this view neglects possible biologically active multimeric forms that are equally consistent with the data. Here, we propose alternative multimeric structures, and suggest that multigenome noncovalent concatemers are more likely to exist under cellular conditions than single cyclised monomers. Concatemers provide a plausible mechanism for the dengue virus to overcome the single-stranded (+)-sense RNA virus dilemma, and can potentially assist genome transport from the virus-induced vesicles into the cytosol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small regulatory RNAs produced by Dicer proteins that regulate gene expression in development and adaptive responses to the environment1,​2,​3,​4. In animals, the degree of base pairing between a miRNA and its target messenger RNA seems to determine whether the regulation occurs through cleavage or translation inhibition1. In contrast, the selection of regulatory mechanisms is independent of the degree of mismatch between a plant miRNA and its target transcript5. However, the components and mechanism(s) that determine whether a plant miRNA ultimately regulates its targets by guiding cleavage or translational inhibition are unknown6. Here we show that the form of regulatory action directed by a plant miRNA is determined by DRB2, a DICER-LIKE1 (DCL1) partnering protein. The dependence of DCL1 on DRB1 for miRNA biogenesis is well characterized7,​8,​9, but we show that it is only required for miRNA-guided transcript cleavage. We found that DRB2 determines miRNA-guided translational inhibition and represses DRB1 expression, thereby allowing the active selection of miRNA regulatory action. Furthermore, our results reveal that the core silencing proteins ARGONAUTE1 (AGO1) and SERRATE (SE) are highly regulated by miRNA-guided translational inhibition. DRB2 has been remarkably conserved throughout plant evolution, raising the possibility that translational repression is the ancient form of miRNA-directed gene regulation in plants, and that Dicer partnering proteins, such as human TRBP, might play a similar role in other eukaryotic systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cushing's syndrome, which is characterized by excessive circulating glucocorticoid concentrations, maybe due to ACTH-dependent or -independent causes that include anterior pituitary and adrenal cortical tumors, respectively. ACTH secretion is stimulated by CRH, and we report a mouse model for Cushing's syndrome due to an N-ethyl-N-nitrosourea (ENU) induced Crh mutation at -120 bp of the promoter region, which significantly increased luciferase reporter activity and was thus a gain-of-function mutation. Crh -120/+ mice, when compared with wild-type littermates, had obesity, muscle wasting, thin skin, hair loss, and elevated plasma and urinary concentrations of corticosterone. In addition, Crh-120/+ mice had hyperglycemia, hyperfructosaminemia, hyperinsulinemia, hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia but normal adiponectin. Crh -120/+ mice also had low bone mineral density, hypercalcemia, hypercalciuria, and decreased concentrations of plasma PTH and osteocalcin. Bone histomorphometry revealed Crh-120/+ mice to have significant reductions in mineralizing surface area, mineral apposition, bone formation rates, osteoblast number, and the percentage of corticoendosteal bone covered by osteoblasts, which was accompanied by an increase in adipocytes in the bone marrow. Thus, a mouse model for Cushing's syndrome has been established, and this will help in further elucidating the pathophysiological effects of glucocorticoid excess and in evaluating treatments for corticosteroid-induced osteoporosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10-5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10-4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10-9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ankylosing spondylitis (AS) has been associated with human leukocyte antigen (HLA)-B27 for over 30 years; however, the mechanism of action has remained elusive. Although many studies have reported associations between AS and other genes in the major histocompatibility complex (MHC) in AS, no conclusive results have emerged. To investigate the contribution of non-B27 MHC genes to AS, a large cohort of AS families and controls were B27 typed and genotyped across the region. Interrogation of the data identified a region of 270kb, lying from 31952649 to 32221738 base pairs from the p-telomere of chromosome 6 and containing 23 genes, which is likely to include genes involved with susceptibility to AS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mr=300.33 , triclinic, P1, a=5.635 (2), b=11.077(2), c=11.582(2)A, a= 70.48 (1), fl= 88.16 (3), y=80.56(3) ° , V= 670.325 A3, Z=2, D x = 1.49 Mg m -3, Cu Ka, n= 1.54184 ,A, g = 2.308mm -1, F(000)=316, T=301K, R=0.054, R w = 0.093 for 1944 observed counter reflections. The sulphur position with respect to the dihydrouracil ring, which is of possible relevance to the action of thymidylate synthetase, is axial in molecule A and equatorial in B. Both molecules show the anti conformation about the glycosidic bond [torsion angle C(6)-N(1)-C(1')-O(4'), 2'CN = 21.6 (9) and 29.4 (10) °] and have the C(4')-endo, O(4')-exo (40T) sugar conformation. The dioxolane-ring conformation is O(2')-endo in A and C(7)-endo in B. The dihydrouracil rings show self base pairing with hydrogen bondsN(3A)...O(ZB) and N(3B)...O(ZA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Fusion transcripts are found in many tissues and have the potential to create novel functional products. Here, we investigate the genomic sequences around fusion junctions to better understand the transcriptional mechanisms mediating fusion transcription/splicing. We analyzed data from prostate (cancer) cells as previous studies have shown extensively that these cells readily undergo fusion transcription. Results We used the FusionMap program to identify high-confidence fusion transcripts from RNAseq data. The RNAseq datasets were from our (N = 8) and other (N = 14) clinical prostate tumors with adjacent non-cancer cells, and from the LNCaP prostate cancer cell line that were mock-, androgen- (DHT), and anti-androgen- (bicalutamide, enzalutamide) treated. In total, 185 fusion transcripts were identified from all RNAseq datasets. The majority (76 %) of these fusion transcripts were ‘read-through chimeras’ derived from adjacent genes in the genome. Characterization of sequences at fusion loci were carried out using a combination of the FusionMap program, custom Perl scripts, and the RNAfold program. Our computational analysis indicated that most fusion junctions (76 %) use the consensus GT-AG intron donor-acceptor splice site, and most fusion transcripts (85 %) maintained the open reading frame. We assessed whether parental genes of fusion transcripts have the potential to form complementary base pairing between parental genes which might bring them into physical proximity. Our computational analysis of sequences flanking fusion junctions at parental loci indicate that these loci have a similar propensity as non-fusion loci to hybridize. The abundance of repetitive sequences at fusion and non-fusion loci was also investigated given that SINE repeats are involved in aberrant gene transcription. We found few instances of repetitive sequences at both fusion and non-fusion junctions. Finally, RT-qPCR was performed on RNA from both clinical prostate tumors and adjacent non-cancer cells (N = 7), and LNCaP cells treated as above to validate the expression of seven fusion transcripts and their respective parental genes. We reveal that fusion transcript expression is similar to the expression of parental genes. Conclusions Fusion transcripts maintain the open reading frame, and likely use the same transcriptional machinery as non-fusion transcripts as they share many genomic features at splice/fusion junctions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two typical alternative conformations for double strandee polynucleotides with Watson-Crick base pairing scheme are presented. these types avoid tangling of the chains. Representative models of these types with two different views, to show the similarity and dissimilarity between these models and the Watson-Crick model, are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have constructed a space-filling (Corey-Pauling-Koltun) model of an alternative structure for DNA. This structure is not a double helix, but consists of a pair of polynucleotide strands lying side by side and held together by Watson-Crick base pairing. Each of the two strands has alternating right- and left-handed helical segments approximately five base pairs in length. Sugar residues in alternating segments along a strand point in opposite directions. A structure slightly different from the present one proposed earlier by ourselves and another group and in which sugars in a strand all point in the same direction is ruled out. The present structure yields natural solutions to the problems of supercoiling of DNA and of strand separation during DNA replication. This model is energetically more favorable than the double helix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystal structure of 2',3'-O-isopropylidene inosine shows a number of interesting features. The four independent molecules in the asymmetric unit exhibit significant conformational variations. Ribose puckers fall in the O(4')-exo region, unfavourable in unsubstituted nucleosides. Hypoxanthine bases show base-pairing (I.I) in a manner analogous to the guanine self pairs (G.G) in 2',3'-O-isopropylidene guanosine but with a C(2)-H…O(6) hydrogen bond instead of N(2)-H…O(6).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.