966 resultados para Spirulina maxima
Resumo:
Amphibian skin contains rich bradykinin-related peptides, but the mode of biosynthesis of these peptides is unknown. In the present study, a novel bradykinin-related peptide, termed bombinakinin M, was purified from skin secretions of the Chinese red bell
Resumo:
Amphibian skin is a rich resource of antimicrobial peptides like maximins and maximins H from toad Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises maximin 3 and a novel peptide. named maximin H5. was isolated from a skin cDNA library of B. maxima. The predicted primary structure of maximin H5 is ILGPVLGLVSDTLDDVLGIL-NH2,. Containing three aspartate residues and no basic amino acid residues. maximin H5 is characterized by an anionic property. Different from cationic maximin H peptides. only Gram-positive strain Staphylococcus aureus was sensitive to maximin H5. while the other bacteria] and fungal strains tested ere resistant to it. The presence of metal ions. like Zn2+ and Mg2+, did not increase its antimicrobial potency. Maximin H5 represents the first example of potential anionic antimicrobial peptides from amphibians, The results provide the first evidence that. together kith cationic antimicrobial peptides. anionic antimicrobial peptides may also exist naturally as part of the innate defense system. (C), 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Two groups of antimicrobial peptides have been isolated from skin secretions of Bombina maxima. Peptides in the first group, named maximins 1, 2, 3, 4 and 5, are structurally related to bombinin-like peptides (BLPs). Unlike BLPs, sequence variations in maximins occurred all through the molecules. In addition to the potent antimicrobial activity, cytotoxicity against tumor cells and spermicidal action of maximins, maximin 3 possessed a significant anti-HIV activity. Maximins 1 and 3 were toxic to mice with LD50 values of 8.2 and 4.3 mg/kg, respectively. Peptides in the second group, termed maximins H1, H2, H3 and H4, are homologous with bombinin H peptides. cDNA sequences revealed that one maximin peptide plus one maximin H peptide derived from a common larger protein. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
A novel bombesin-related peptide was isolated from skin secretions of Chinese red belly toad Bombina maxima. Its primary structure was established as pGlu-Lys-Lys-Pro-Pro-Arg-Pro-Pro-Gln-Trp-Ala-Val-Gly-His-Phe-Met-NH2. The amino-terminal (N-terminal) 8-residue segment comprising four prolines and three basic residues is extensively different from bombesins from other Bombina species. The peptide was thus named proline rich bombesin (PR-bombesin). PR-bumbesin was found to elicit concentration-dependent contractile effects in the rat stomach strip, with both increased potency and intrinsic activity as compared with those of [Leu(13)]bombesin. Analysis of different bombesin cDNA structures revealed that an 8 to 14- nucleotide fragment replacement in the peptide coding region (TGGGGAAT in the cDNAs of multiple bombesin forms from Bombina orientalis and CACCCCGGCCACCC in the cDNA of PR-bombesin) resulted in an unusual Pro-Pro-Arg-Pro-Pro motif in the N-terminal part of PR-bombesin. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
A novel trypsin inhibitor was identified and purified from skin secretions of Chinese red-belly toad Bombina maxima. The partial N-terminal 29 amino acid residues of the peptide, named BMTI, were determined by automated Edman degradation. This allowed the cloning of a full-length cDNA encoding BMTI from a cDNA library prepared from the toad skin. The deduced complete amino acid sequence of BMTI indicates that mature BMTI is composed of 60 amino acids. A FASTA search in the databanks revealed that BMTI exhibits 81.7% sequence identity with BSTI, a trypsin/thrombin inhibitor from European toad Bombina bombina skin secretions. Sequence differences between BMTI and BSTI were due to 11 substitutions at positions 2, 9, 25, 27, 36-37, 39, 41-42, 50 and 56. BMTI potently inhibited trypsin with a K-i value of 0.06 muM, similar to that of BSTI. However, unlike BSTI, which also inhibited thrombin with a K-i value of 1 muM, no inhibitory effect of BMTI on thrombin was observed under the assay conditions. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
A novel 28-amino acid peptide, termed bombinakinin-GAP, was purified and characterized from skin secretions of the toad Bombina maxima. Its primary structure was established as DMYEIKQYKTAHGRPPICAPGEQCPIWV-NH2, in which two cysteines form a disulfide bond. A FASTA search of SWISS-PROT databank detected a 32% sequence identity between the sequences of the peptide and a segment of rat cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular (i.c.v.) administration of the peptide induced a significant decrease in food intake in rats, suggesting that it played a role in the control of feeding by brain. Analysis of its cDNA structure revealed that this peptide is coexpressed with bombinakinin M, a bradykinin-related peptide from the same toad. Bombinakinin-GAP appears to be the first example of a novel class of bioactive peptides from amphibian skin, which may be implicated in feeding behavior. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
Amphibian skin is a rich resource of bioactive peptides like proline-rich bombesin from frog Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises proline-rich bombesin and a novel peptide, designated as bombestatin, was isolated from a skin cDNA library of B. maxima. The predicted primary structure of the novel peptide is WEVLLNVALIRLELLSCRSSKDQDQKESCGMHSW, in which two cysteines form a disulfide bond. A BLAST search of databases did not detect sequences with significant similarity. Bombestatin possesses dose-dependent contractile activity on rat stomach strips. The differences between cDNAs encoding PR-bombesin plus bombestatin and PR-bombesin alone are due to fragment insertions located in 3'-coding region and 3'-untranslational region, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Amphibian skin is a rich resource of antimicrobial peptides, like maximins and maximin Hs from frog Bombina maxima. Novel cDNA clones encoding a precursor protein, which comprises a novel maximin peptide (maximin 9) and reported maximin H3, were isolated from two constructed skin cDNA libraries of B. maxima. The predicted primary structure of maximin 9 is GIGRKFLGGVKTTFRCGVKDFASKHLY-NH2. A surprising substitution is at position 16, with a free cysteine in maximin 9 rather than usual conserved glycine in other reported maximins. Maximin 9, the homodimer form and its Cys(16) to Gly(16) mutant were synthesized and their antimicrobial activities were evaluated. Unlike previously reported maximin 3, the tested bacterial and fungal strains were resistant to maximin 9, its homodimer and the Cys(16) to Gly(16) mutant (with MICs > 100 mu M). On the other hand, interestingly, while eight clinical Mollicutes strains were generally resistant to maximin 9 homodimer and its Cys(16) to Gly(16) mutant, most of them are sensitive to maximin 9 at a peptide concentration of 30 mu M, especially in the presence of dithiothreitol. These results indicate that the presence of a reactive Cys residue in maximin 9 is important for its antimycoplasma activity. The diversity of antimicrobial peptide cDNA structures encountered in B. maxima skin cDNA libraries and the antimicrobial specificity differences of the peptides may reflect well the species' adaptation to the unique microbial environments. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Amphibian skin contains rich neuropeptides. In the present study, a novel neuromedin U (NmU) analog was isolated from skin secretions of Chinese red belly Load Bombina maxima. Being 17-amino acids long, its primary structure was established as DSSGIVGRPFFLFRPRN-NH2, in which the C-terminal 8-residue segment (FFLFRPRN) is the same as that of rat NmU, while the N-terminal part DSSGIVGRP shows a great sequence variation compared with those of NmU peptides from different resources. The peptide, named Bm-NmU-17, was found to elicit concentration-dependent contractile effects on smooth muscle of rat uterus horns. The cDNA Structure of the peptide, as obtained by a 3'-RACE strategy and subsequently cloning from a skin cDNA library, was found to contain a coding region of 438 nucleotides. The encoded precursor is composed of 145 amino acids with a single copy of Bm-NmU-17 located towards the C-terminus. The sequence of the peptide is preceded by a dibasic site (Lys-Arg) and followed by the sequence of Gly-Arg-Lys, providing the sites of cleavage and releasing of the mature peptide. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In mammals, trefoil factor family (TFF) proteins are involved in mucosal maintenance and repair, and they are also implicated in tumor suppression and cancer progression. A novel two domain TFF protein from frog Bombina maxima skin secretions (Bm-TFF2) has been purified and cloned. It activated human platelets in a dose-dependent manner and activation of integrin a(11b)beta(3) was involved. Aspirin and apyrase did not largely reduce platelet response to Bm-TFF2 (a 30% inhibition), indicating that the aggregation is not substantially dependent on ADP and thromboxane A2 autocrine feedback. Elimination of external Ca2+ with EGTA did not influence the platelet aggregation induced by Bm-TFF2, meanwhile a strong calcium signal (cytoplasmic Ca2+ release) was detected, suggesting that activation of phospholipase C (PLC) is involved. Subsequent immunoblotting revealed that, unlike in platelets activated by stejnulxin (a glycoprotein VI agonist), PLC gamma 2 was not phosphorylated in platelets activated by Bm-TFF2. FITC-labeled Bm-TFF2 bound to platelet membranes. Bm-TFF2 is the first TFF protein reported to possess human platelet activation activity. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Antimicrobial peptides secreted by the skin of many amphibians play an important role in innate immunity. From two skin cDNA libraries of two individuals of the Chinese red belly toad (Bombina maxima), we identified 56 different antimicrobial peptide cDNA sequences, each of which encodes a precursor peptide that can give rise to two kinds of antimicrobial peptides, maximin and maximin H. Among these cDNA, we found that the mean number of nucleotide substitution per non-synonymous site in both the maximin and maximin H domains significantly exceed the mean number of nucleotide substitution per synonymous site, whereas the same pattern was not observed in other structural regions, such as the signal and propiece peptide regions, suggesting that these antimicrobial peptide genes have been experiencing rapid diversification driven by Darwinian selection. We cloned and sequenced seven genes amplified from skin or liver genomic DNA. These genes have three exons and share the same gene structure, in which both maximin and maximin H are encoded by the third exon. This suggests that alternative splicing and somatic recombination are less likely to play a role in creating the diversity of maximins and maximin Hs. The gene trees based on different domain regions revealed that domain shuffling or gene conversion among these genes might have happened frequently.
Resumo:
Bombinakinin M (DLPKINRKGP-bradykinin) is a bradykinin-related peptide purified from skin secretions of the frog Bombina maxima. As previously reported, its biosynthesis is characterized by a tandem repeats with various copy numbers of the peptide and sometimes co-expressed with other structure-function distinguishable peptides. At present study, two novel cDNAs encoding bombinakinin M and its variants were cloned from a cDNA library from the skin of the frog. The encoded two precursor proteins are common in that each contains three repeats of a novel 16-amino acid peptide unit and one copy of kinestatin at their N- and C-terminal parts, respectively. They differ in that the first precursor contains two copies of bombinakinin M and the second one contains one copy of a novel bombinakinin M variant. Bombinakinin M was found to elicit concentration-dependent contractile effects on guinea pig ileum, with an EC50 value of 4 nM that is four times higher than that of bradykinin (1 nM). Interestingly, the synthetic peptide (DYTIRTRLH-amide), as deduced from the 16-amino acid peptide repeats in the newly cloned cDNAs, possessed weak inhibitory activity on the contractile effects of bombinakinin M, but not on that of bradykinin. Furthermore, the newly identified bombinakinin M variant (DLSKMSFLHG-Ile(1)-bradykinin), did not show contractile activity on guinea pig ileum, but showed potentiation effect on the myotropic activity of bradykinin. In a molar raito of 1:58, it augmented the activity of bradykinin up to two-fold. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Amphibian skin secretions are rich in antimicrobial peptides acting as important components of innate defense system against invading microorganisms. A novel type of peptide, designated as maximin S, was deduced by random sequencing of 793 clones from a constructed Bombina maxima skin cDNA library. The putative primary structures of maximin S peptides can be grouped into five species, in which maximin S I has 14 amino acid residues and the rest of maximin S peptides (S2-S5) all have 18 amino acid residues. Unlike most of the amphibian antimicrobial peptides so far identified, the newly characterized four maximin S precursors are composed of maximin S I and different combinations of tandem repeated maximin S2-S5 linked by internal peptides. Except maximin S I, the predicted secondary structures of maximin S2-S5 show a similar amphipathic alpha-helical structure. MALDI-TOF mass spectrometry analysis of partially isolated skin secretions of the toad indicates that most of the deduced maximin S peptides are expressed. Two deduced maximin S peptides (S1, S4) were synthesized and their antimicrobial activities were tested. Maximin S4 only had an antibiotic activity against mycoplasma and had no antibacterial or antifungal activity toward tested strains. Maximin S1 had no activity under the same conditions. (C) 2004 Elsevier Inc. All rights reserved.