997 resultados para oligonucleotide probe


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The gene encoding 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO; EC 1.14.12.4) was cloned by using an oligonucleotide probe corresponding to the N terminus of the enzyme to screen a DNA library of Pseudomonas sp. MA-1. The gene encodes for a protein of 379 amino acid residues corresponding to a molecular mass of 41.7 kDa, the same as that previously estimated for MHPCO. MHPCO was expressed in Escherichia coli and found to have the same properties as the native enzyme from Pseudomonas sp. MA-1. This study shows that MHPCO is a homotetrameric protein with one flavin adenine dinucleotide bound per subunit. Sequence comparison of the enzyme with other hydroxylases reveals regions that are conserved among aromatic flavoprotein hydroxylases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 14 nt DNA sequence 5′-AGAATGTGGCAAAG-3′ from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar–phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5′-end of the probe strand as donor and BODIPY-Texas Red on the 3′-amino group of either strand of the target duplex as acceptor. There was full protection from OsO4-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe–intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the spatial pattern of expression of ipdC, a plant inducible gene involved in indoleacetic acid biosynthesis in Erwinia herbicola, among individual cells on plants to gain a better understanding of the role of this phenotype in the epiphytic ecology of bacteria and the factors involved in the regulation of ipdC. Nonpathogenic E. herbicola strain 299R harboring a transcriptional fusion of ipdC to gfp was inoculated onto bean plants, recovered from individual leaves 48 h after inoculation, and subjected to fluorescence in situ hybridization using a 16S rRNA oligonucleotide probe specific to strain 299R. Epifluorescence images captured through a rhodamine filter were used to distinguish the 5carboxytetramethylrhodamine-labeled cells of strain 299R from other leaf microflora. Quantification of the green fluorescence intensity of individual cells by analysis of digital images revealed that about 65% of the 299R cells recovered from bean leaves had higher ipdC expression than in culture. Additionally, 10% of the cells exhibited much higher levels of green fluorescence than the median fluorescence intensity, indicating that they are more heterogeneous with respect to ipdC expression on plants than in culture. Examination of 299R cells in situ on leaf surfaces by confocal laser scanning microscopy after fluorescence in situ hybridization of cells on leaf samples showed that even cells that were in close proximity exhibited dramatically different green fluorescence intensities, and thus, were in a physical or chemical microenvironment that induced differential expression of ipdC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characterization of the source of the odor in the human axillary region is not only of commercial interest but is also important biologically because axillary extracts can alter the length and timing of the female menstrual cycle. In males, the most abundant odor component is known to be E-3-methyl-2-hexenoic acid (E-3M2H), which is liberated from nonodorous apocrine secretions by axillary microorganisms. Recently, it was found that in the apocrine gland secretions, 3M2H is carried to the skin surface bound to two proteins, apocrine secretion odor-binding proteins 1 and 2 (ASOB1 and ASOB2) with apparent molecular masses of 45 kDa and 26 kDa, respectively. To better understand the formation of axillary odors and the structural relationship between 3M2H and its carrier protein, the amino acid sequence and glycosylation pattern of ASOB2 were determined by mass spectrometry. The ASOB2 protein was identified as apolipoprotein D (apoD), a known member of the alpha2mu-microglobulin superfamily of carrier proteins also known as lipocalins. The pattern of glycosylation for axillary apoD differs from that reported for plasma apoD, suggesting different sites of expression for the two glycoproteins. In situ hybridization of an oligonucleotide probe against apoD mRNA with axillary tissue demonstrates that the message for synthesis of this protein is specific to the apocrine glands. These results suggest a remarkable similarity between human axillary secretions and nonhuman mammalian odor sources, where lipocalins have been shown to carry the odoriferous signals used in pheromonal communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Eubacterial transducers are transmembrane, methyl-accepting proteins central to chemotaxis systems and share common structural features. We identified a large family of transducer proteins in the Archaeon Halobacterium salinarium using a site-specific multiple antigenic peptide antibody raised against 23 amino acids, representing the highest homology region of eubacterial transducers. This immunological observation was confirmed by isolating 13 methyl-accepting taxis genes using a 27-mer oligonucleotide probe, corresponding to conserved regions between the eubacterial and first halobacterial phototaxis transducer gene htrI. On the basis of the comparison of the predicted structural domains of these transducers, we propose that at least three distinct subfamilies of transducers exist in the Archaeon H. salinarium: (i) a eubacterial chemotaxis transducer type with two hydrophobic membrane-spanning segments connecting sizable domains in the periplasm and cytoplasm; (ii) a cytoplasmic domain and two or more hydrophobic transmembrane segments without periplasmic domains; and (iii) a cytoplasmic domain without hydrophobic transmembrane segments. We fractionated the halobacterial cell lysate into soluble and membrane fractions and localized different halobacterial methyl-accepting taxis proteins in both fractions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have cloned the gene for a putative chloroplast RNA polymerase sigma factor from the unicellular rhodophyte Cyanidium caldarium. This gene contains an open reading frame encoding a protein of 609 amino acids with domains highly homologous to all four conserved regions found in bacterial and cyanobacterial sigma 70-type subunits. When Southern blots of genomic DNA were hybridized to the "rpoD box" oligonucleotide probe, up to six hybridizing hands were observed. Transcripts of the sigma factor gene were undetectable in RNA from dark-grown cells but were abundant in the poly(A)+ fraction of RNA from illuminated cells. The sigma factor gene was expressed in Escherichia coli, and antibodies against the expressed sigma factor fusion protein cross-reacted with a 55-kDa protein in partially purified chloroplast RNA polymerase. Antibodies directed against a cyanobacterial RNA polymerase sigma factor also cross-reacted with a 55-kDa protein in the same enzyme preparation. Immunoprecipitation experiments showed that this enzyme preparation contains proteins with the same molecular weights as the alpha, beta, beta', and beta" subunits of chloroplast RNA polymerase in higher plants. This study identifies a gene for a plastid RNA polymerase sigma factor and indicates that there may be a family of nuclear-encoded sigma factors that recognize promoters in subsets of plastid genes and regulate differential gene expression at the transcriptional level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes, but present at a much lower level in preadipocytes, protects the same region between nucleotides -58 and -42 relative to the transcriptional start site. Electrophoretic mobility-shift analysis using nuclear extracts from adipose tissue or 3T3-L1 adipocytes and an oligonucleotide probe corresponding to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C/EBP alpha expression vector into 3T3-L1 cells with a series of 5' truncated ob gene promoter constructs activated reporter gene expression with all constructs containing the proximal C/EBP binding site (nucleotides -55 to -47). Mutation of this site blocked transactivation by C/EBP alpha. Taken together, these findings implicate C/EBP alpha as a transcriptional activator of the ob gene promoter and identify the functional C/EBP binding site in the promoter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combinatorial IgG Fab phage display libraries prepared from a systemic lupus erythematosus (SLE) donor and a healthy donor were affinity selected against human placental DNA. Human monoclonal antibody Fab fragments specific for DNA were isolated from both libraries, although Fabs of the highest affinity were isolated only from the lupus library. Generally, apparent affinities of the Fabs for human placental DNA, purified double-stranded DNA, and denatured DNA were approximately equivalent. Surface plasmon resonance indicated Fab binding constants for a double-stranded oligodeoxynucleotide of 0.2-1.3 x 10(8) M-1. The higher-affinity Fabs, as ranked by binding to human placental DNA or to the oligonucleotide probe, tested positive in the Crithidia luciliae assay commonly used in the diagnosis of SLE, and interestingly the genes encoding the heavy-chain variable regions of these antibodies displayed evidence of only minimal somatic hypermutation. The heavy chains of the SLE Fabs were characterized by a predominance of basic residues toward the N terminus of complementarity-determining region 3 (CDR3). The crucial role of heavy-chain CDR3 (HCDR3) in high-affinity DNA recognition was suggested by the creation of DNA binding in an unrelated antibody by HCDR3 transplantation from SLE antibodies. We propose that high-affinity DNA-binding antibodies can arise in SLE without extensive somatic hypermutation in the variable-region genes because of the expression of inappropriate HCDR3s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six hundred twenty-one samples from Portugal, the Cabo Verde archipelago, and Guinea-Bissau were typed for HLA-A, HLA-B, and HLADRB1usingthepolymerasechainreaction–sequence-specificoligonucleotide probe (PCR-SSOP) method and the sequence-based typing (SBT) method to characterizeandcomparediscrepanciesbetweenthetwomethods.Fifty-three alleles (4.27% of 1,242 chromosomes typed) identified by the PCR-SSOP method were not concordant with the results obtained using the SBT method. Thirty-four (2.74% of total chromosomes typed) PCR-SSOP mistyping results were discrepancies inside the same allele group and 19 others (1.53% of total chromosomes typed) were relative to nonconcordant results between different groups. PCR-SSOP allele mistyping is the result of interpretation difficulties resulting from less intense, absent, or dubious hybridization patterns. Noncommercial PCR-SSOP procedures are highly exigent on the technicians’ experience and the availability of properly calibrated high-precision equipment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Affymetrix GeneChip arrays are widely used for transcriptomic studies in a diverse range of species. Each gene is represented on a GeneChip array by a probe- set, consisting of up to 16 probe-pairs. Signal intensities across probe- pairs within a probe-set vary in part due to different physical hybridisation characteristics of individual probes with their target labelled transcripts. We have previously developed a technique to study the transcriptomes of heterologous species based on hybridising genomic DNA (gDNA) to a GeneChip array designed for a different species, and subsequently using only those probes with good homology. Results: Here we have investigated the effects of hybridising homologous species gDNA to study the transcriptomes of species for which the arrays have been designed. Genomic DNA from Arabidopsis thaliana and rice (Oryza sativa) were hybridised to the Affymetrix Arabidopsis ATH1 and Rice Genome GeneChip arrays respectively. Probe selection based on gDNA hybridisation intensity increased the number of genes identified as significantly differentially expressed in two published studies of Arabidopsis development, and optimised the analysis of technical replicates obtained from pooled samples of RNA from rice. Conclusion: This mixed physical and bioinformatics approach can be used to optimise estimates of gene expression when using GeneChip arrays.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-density oligonucleotide (oligo) arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L.) Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM) probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P) stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ webcite and may be used to facilitate transcriptomic analyses of a wide range of plant and animal species in the absence of custom arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new approach, short-oligonucleotide-ligation assay on DNA chip (SOLAC), is developed to detect mutations in rifampin-resistant Mycobacterium tuberculosis. The method needs only four common probes to detect 15 mutational variants of the rpoB gene within 12 h. Fifty-five rifampin-resistant M. tuberculosis isolates were analyzed, resulting in 87.3% accuracy and 83.6% concordance relative to DNA sequencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel anthracene-tagged oligonucleotide can discriminate between a fully-matched DNA target sequence and one with a single mismatching base-pair through a remarkable difference in fluorescence emission intensity upon duplex formation.