953 resultados para nonsense mutation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In many organisms nonsense mutations decrease the level of mRNA. In the case of mammalian cells, it is still controversial whether translation is required for this nonsense-mediated RNA decrease (NMD). Although previous analyzes have shown that conditions that impede translation termination at nonsense codons also prevent NMD, the residual level of termination was unknown in these experiments. Moreover, the conditions used to impede termination might also have interfered with NMD in other ways. Because of these uncertainties, we have tested the effects of limiting translation of a nonsense codon in a different way, using two mutations in the immunoglobulin μ heavy chain gene. For this purpose we exploited an exceptional nonsense mutation at codon 3, which efficiently terminates translation but nonetheless maintains a high level of μ mRNA. We have shown 1) that translation of Ter462 in the double mutant occurs at only ∼4% the normal frequency, and 2) that Ter462 in cis with Ter3 can induce NMD. That is, translation of Ter462 at this low (4%) frequency is sufficient to induce NMD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cleidocranial dysplasia (CCD), an autosomal-dominant human bone disease, is thought to be caused by heterozygous mutations in runt-related gene 2 (RUNX2)/polyomavirus enhancer binding protein 2αA (PEBP2αA)/core-binding factor A1 (CBFA1). To understand the mechanism underlying the pathogenesis of CCD, we studied a novel mutant of RUNX2, CCDαA376, originally identified in a CCD patient. The nonsense mutation, which resulted in a truncated RUNX2 protein, severely impaired RUNX2 transactivation activity. We show that signal transducers of transforming growth factor β superfamily receptors, Smads, interact with RUNX2 in vivo and in vitro and enhance the transactivation ability of this factor. The truncated RUNX2 protein failed to interact with and respond to Smads and was unable to induce the osteoblast-like phenotype in C2C12 myoblasts on stimulation by bone morphogenetic protein. Therefore, the pathogenesis of CCD may be related to the impaired Smad signaling of transforming growth factor β/bone morphogenetic protein pathways that target the activity of RUNX2 during bone formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ectopic calcification (EC), which is the pathological deposition of calcium and phosphate in extra-skeletal tissues, may be associated with hypercalcaemic and hyperphosphataemic disorders, or it may occur in the absence of metabolic abnormalities. In addition, EC may be inherited as part of several monogenic disorders and studies of these have provided valuable insights into the metabolic pathways regulating mineral metabolism. For example, studies of tumoural calcinosis, a disorder characterised by hyperphosphataemia and progressive EC, have revealed mutations of fibroblast growth factor 23 (FGF23), polypeptide N-acetyl galactosaminyltransferase 3 (GALNT3) and klotho (KL), which are all part of a phosphate-regulating pathway. However, such studies in humans are limited by the lack of available large families with EC, and to facilitate such studies we assessed the progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for EC. This identified two mutants with autosomal recessive forms of EC, and reduced lifespan, designated Ecalc1 and Ecalc2. Genetic mapping localized the Ecalc1 and Ecalc2 loci to a 11.0 Mb region on chromosome 5 that contained the klotho gene (Kl), and DNA sequence analysis identified nonsense (Gln203Stop) and missense (Ile604Asn) Kl mutations in Ecalc1 and Ecalc2 mice, respectively. The Gln203Stop mutation, located in KL1 domain, was severely hypomorphic and led to a 17-fold reduction of renal Kl expression. The Ile604Asn mutation, located in KL2 domain, was predicted to impair klotho protein stability and in vitro expression studies in COS-7 cells revealed endoplasmic reticulum retention of the Ile604Asn mutant. Further phenotype studies undertaken in Ecalc1 (kl203X/203X) mice demonstrated elevations in plasma concentrations of phosphate, FGF23 and 1,25-dihydroxyvitamin D. Thus, two allelic variants of Kl that develop EC and represent mouse models for tumoural calcinosis have been established. © 2015 Esapa et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP) are characterized by a high risk and early onset of colorectal cancer (CRC). HNPCC is due to a germline mutation in one of the following MMR genes: MLH1, MSH2, MSH6 and PMS2. A majority of FAP and attenuated FAP (AFAP) cases are due to germline mutations of APC, causing the development of multiple colorectal polyps. To date, over 450 MMR gene mutations and over 800 APC mutations have been identified. Most of these mutations lead to a truncated protein, easily detected by conventional mutation detection methods. However, in about 30% of HNPCC and FAP, and about 90% of AFAP families, mutations remain unknown. We aimed to clarify the genetic basis and genotype-phenotype correlation of mutation negative HNPCC and FAP/AFAP families by advanced mutation detection methods designed to detect large genomic rearrangements, mRNA and protein expression alterations, promoter mutations, phenotype linked haplotypes, and tumoral loss of heterozygosity. We also aimed to estimate the frequency of HNPCC in Uruguayan CRC patients. Our expression based analysis of mutation negative HNPCC divided these families into two categories: 1) 42% of families linked to the MMR genes with a phenotype resembling that of mutation positive, and 2) 58% of families likely to be associated with other susceptibility genes. Unbalanced mRNA expression of MLH1 was observed in two families. Further studies revealed that a MLH1 nonsense mutation, R100X was associated with aberrant splicing of exons not related to the mutation and an MLH1 deletion (AGAA) at nucleotide 210 was associated with multiple exon skipping, without an overall increase in the frequency of splice events. APC mutation negative FAP/AFAP families were divided into four groups according to the genetic basis of their predisposition. Four (14%) families displayed a constitutional deletion of APC with profuse polyposis, early age of onset and frequent extracolonic manifestations. Aberrant mRNA expression of one allele was observed in seven (24%) families with later onset and less frequent extracolonic manifestations. In 15 (52%) families the involvement of APC could neither be confirmed nor excluded. In three (10%) of the families a germline mutation was detected in genes other than APC: AXIN2 in one family, and MYH in two families. The families with undefined genetic basis and especially those with AXIN2 or MYH mutations frequently displayed AFAP or atypical polyposis. Of the Uruguayan CRC patients, 2.6% (12/461) fulfilled the diagnostic criteria for HNPCC and 5.6% (26/461) were associated with increased risk of cancer. Unexpectedly low frequency of molecularly defined HNPCC cases may suggest a different genetic profile in the Uruguayan population and the involvement of novel susceptibility genes. Accurate genetic and clinical characterization of families with hereditary colorectal cancers, and the definition of the genetic basis of "mutation negative" families in particular, facilitate proper clinical management of such families.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Congenital missing of teeth, tooth agenesis or hypodontia, is one of the most common developmental anomalies in man. The common forms in which one or a few teeth are absent, may cause occlusal or cosmetic harm, while severe forms which are relatively rare always require clinical attention to support and maintain the dental function. Observation of tooth agenesis is also important for diagnosis of malformation syndromes. Some external factors may cause developmental defects and agenesis in dentition. However, the role of inheritance in the etiology of tooth agenesis is well established by twin and family studies. Studies on familial tooth agenesis as well as mouse null mutants have also identified several genetic factors. However, these explain syndromic or rare dominant forms of tooth agenesis, whereas the genes and defects responsible for the majority of cases of tooth agenesis, especially the common and less severe forms, are largely unknown. In this study it was shown, that a dominant nonsense mutation in PAX9 was responsible for severe tooth agenesis (oligodontia) in a Finnish family. In a study of tooth agenesis associated with Wolf-Hirschhorn syndrome, it was shown that severe tooth agenesis was present if the causative deletion in 4p spanned the MSX1 locus. It was concluded that severe tooth agenesis was caused by haploinsufficiency of these transcription factors. A summary of the phenotypes associated with known defects in MSX1 and PAX9 showed that, despite similarities, they were significantly different, suggesting that the genes, in addition to known interactions, also have independent roles during the development of human dentition. The original aim of this work was to identify gene defects that underlie the common incisor and premolar hypodontia. After excluding several candidate genes, a genome-wide search was conducted in seven Finnish families in which this phenotype was inherited in an autosomal dominant manner. A promising locus for second premolar agenesis was identified in chromosome 18 in one family and this finding was supported by results from other families. The results also implied the existence of other loci both for second premolar agenesis and for incisor agenesis. On the other hand the results did not lend support for comprehensive involvement of the most obvious candidate genes in the etiology of incisor and premolar hypodontia. Rather, they suggest remarkable genetic heterogeneity of tooth agenesis. The available evidence suggests that quantitative defects during tooth development predispose to a failure to overcome a developmental threshold and to agenesis. The results of the study increase the understanding of the etiology and heredity of tooth agenesis. Further studies may lead to identification of novel genes that affect the development of teeth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O retardo mental (RM) é caracterizado por um funcionamento intelectual significantemente abaixo da média (QI<70). A prevalência de RM varia entre estudos epidemiológicos, sendo estimada em 2-3% da população mundial, constituindo assim, um dos mais importantes problemas de saúde pública. Há um consenso geral de que o RM é mais comum no sexo masculino, um achado atribuído às numerosas mutações nos genes encontrados no cromossomo X, levando ao retardo mental ligado ao X (RMLX). Dentre os genes presentes no cromossomo X, o Jumonji AT-rich interactive domain IC (JARID1C) foi recentemente identificado como um potencial candidato etiológico do RM, quando mutado. O JARID1C codifica uma proteína que atua como uma desmetilase da lisina 4 da histona H3 (H3K4), imprescindível para a regulação epigenética. Tão recente como a identificação do gene JARID1C, é a descoberta de que mudanças no número de cópias de sequências de DNA, caracterizadas por microdeleções e microduplicações, poderiam ser consideradas como razões funcionalmente importantes de RMLX. Atualmente, cerca de 5-10% dos casos de RM em homens são reconhecidos por ocorrerem devido a estas variações do número de cópias no cromossomo X. Neste estudo, investigamos mutações no gene JARID1C, através do rastreamento dos éxons 9, 11, 12, 13, 15 e 16, em 121 homens de famílias com RM provavelmente ligado ao X. Paralelamente, realizamos a análise da variação do número de cópias em 16 genes localizados no cromossomo X através da técnica de MLPA no mesmo grupo de pacientes. Esta metodologia consiste em uma amplificação múltipla que detecta variações no número de cópias de até 50 sequências diferentes de DNA genômico, sendo capaz de distinguir sequências que diferem em apenas um nucleotídeo. O DNA genômico foi extraído a partir de sangue periférico e as amostras foram amplificadas pela técnica de PCR, seguida da análise por sequenciamento direto. Foram identificadas três variantes na sequência do gene JARID1C entre os pacientes analisados: a variante intrônica 2243+11 G>T, que esteve presente em 67% dos pacientes, a variante silenciosa c.1794C>G e a mutação inédita nonsense c.2172C>A, ambas presentes em 0,82% dos indivíduos investigados. A análise através do MLPA revelou uma duplicação em um dos pacientes envolvendo as sondas referentes ao gene GDI1 e ao gene HUWE1. Este trabalho expande o estudo de mutações no gene JARID1C para a população brasileira ereforça a importância da triagem de mutações neste gene em homens portadores de RM familiar de origem idiopática, assim como, é primeiro relato científico relativo à investigação de variações no número de cópias de genes localizados no cromossomo X em homens brasileiros com RM, através da técnica de MLPA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequence analysis of the tyrosinase (TYR) coding region from one albino rhesus monkey (Macaca mulatta) family revealed that the two monkeys with phenotype similar to human TYR-negative oculocutaneous albinism (OCA) were homozygous for a missense mutation (S184TER) in exon 1 at codon 184. The offspring of one of the albino monkey (''Kangkang'') are all heterozygous for the S184TER mutation, but the S184TER mutation was not observed in 93 control individuals. We conclude that the point mutation is responsible and sufficient to generate the albino rhesus monkey phenotype. The rough age of the S184TER nonsense mutation may be about 0.8 million years using a rate of 0.16% per million years. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The endoplasmic reticulum-associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum-associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1. METHODS: Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. RESULTS: All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. CONCLUSION: NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum-associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary familial and congenital polycythaemia (PFCP) is a disease characterized by increased red blood cell mass, and can be associated with mutations in the intracellular region of the erythropoietin (EPO) receptor (EPOR). Here we explore the mechanisms by which EPOR mutations induce PFCP, using an experimental system based on chimeric receptors between epidermal growth factor receptor (EGFR) and EPOR. The design of the chimeras enabled EPOR signalling to be triggered by EGF binding. Using this system we analysed three novel EPOR mutations discovered in PFCP patients: a deletion mutation (Del1377-1411), a nonsense mutation (C1370A) and a missense mutation (G1445A). Three different chimeras, bearing these mutations in the cytosolic, EPOR region were generated; Hence, the differences in the chimera-related effects are specifically attributed to the mutations. The results show that the different mutations affect various aspects related to the signalling and metabolism of the chimeric receptors. These include slower degradation rate, higher levels of glycan-mature chimeric receptors, increased sensitivity to low levels of EGF (replacing EPO in this system) and extended signalling cascades. This study provides a novel experimental system to study polycythaemia-inducing mutations in the EPOR, and sheds new light on underlying mechanisms of EPOR over-activation in PFCP patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The utility of p53 as a prognostic assay has been elusive. The aims of this study were to describe a novel, reproducible scoring system and assess the relationship between differential p53 immunohistochemistry (IHC) expression patterns, TP53 mutation status and patient outcomes in breast cancer.

Methods and Results: Tissue microarrays were used to study p53 IHC expression patterns: expression was defined as extreme positive (EP), extreme negative (EN), and non-extreme (NE; intermediate patterns). Overall survival (OS) was used to define patient outcome. A representative subgroup (n = 30) showing the various p53 immunophenotypes was analysed for TP53 hotspot mutation status (exons 4-9). Extreme expression of any type occurred in 176 of 288 (61%) cases. As compared with NE expression, EP expression was significantly associated (P = 0.039) with poorer OS. In addition, as compared with NE expression, EN expression was associated (P = 0.059) with poorer OS. Combining cases showing either EP or EN expression better predicted OS than either pattern alone (P = 0.028). This combination immunophenotype was significant in univariate but not multivariate analysis. In subgroup analysis, six substitution exon mutations were detected, all corresponding to extreme IHC phenotypes. Five missense mutations corresponded to EP staining, and the nonsense mutation corresponded to EN staining. No mutations were detected in the NE group.

Conclusions: Patients with extreme p53 IHC expression have a worse OS than those with NE expression. Accounting for EN as well as EP expression improves the prognostic impact. Extreme expression positively correlates with nodal stage and histological grade, and negatively with hormone receptor status. Extreme expression may relate to specific mutational status.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UNLABELLED: Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host.

IMPORTANCE: Some bacterial pathogens establish long-term infections that are difficult or impossible to eradicate with current treatments. Rapid advances in genome sequencing technologies provide a powerful tool for understanding bacterial persistence within the human host. Burkholderia pseudomallei is considered a highly pathogenic bacterium because infection is commonly fatal. Here, we document within-host evolution of B. pseudomallei in a unique case of human infection with ongoing chronic carriage. Genomic comparison of isolates obtained 139 months (11.5 years) apart showed a strong signal of adaptation within the human host, including inactivation of virulence and immunogenic factors, and deletion of pathways involved in environmental survival. Two global regulatory genes were mutated in the 139-month isolate, indicating extensive regulatory changes favoring bacterial persistence. Our study provides insights into B. pseudomallei pathogenesis and, more broadly, identifies parallel evolutionary mechanisms that underlie chronic persistence of all bacterial pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les anomalies du tube neural (ATN) sont des malformations congénitales parmi les plus fréquentes chez l’humain en touchant 1-2 nouveau-nés par 1000 naissances. Elles résultent d’un défaut de fermeture du tube neural pendant l’embryogenèse. Les formes les plus courantes d'ATN chez l'homme sont l'anencéphalie et le spina-bifida. Leur étiologie est complexe impliquant à la fois des facteurs environnementaux et des facteurs génétiques. Un dérèglement dans la signalisation Wnt, incluant la signalisation canonique Wnt/β-caténine et non-canonique de la polarité planaire cellulaire (PCP), peut causer respectivement le cancer ou les anomalies du tube neural (ATN). Les deux voies semblent s’antagoniser mutuellement. Dans cette étude, nous investiguons les rôles de Lrp6 et deANKRD6, entant qu’interrupteurs moléculaires entre les deux voies de signalisation Wnt, et CELSR1, en tant que membre de la PCP, chez la souris mutante Skax26m1Jus, générée par l’agent mutagène N-Ethyl-N-Nitrosuera, et dans une cohorte de patients humains ATN. Pour Lrp6, nous avons démontré que Skax26m1Jus représente un allèle hypermorphe de Lrp6 avec une augmentation de l’activité de la signalisation Wnt/canonique et une diminution de l’activité JNK induite par la voie PCP. Nous avons également montré que Lrp6Skax26m1Jus interagit génétiquement avec un mutant PCP (Vangl2Lp) où les doubles hétérozygotes ont montré une fréquence élevée d’ATN et des défauts dans la polarité des cellules ciliées de la cochlée. Particulièrement, notre étude démontre l'association des nouvelles et rares mutations faux-sens dans LRP6 avec les ATN humaines. Nous montrons que trois mutations de LRP6 causent une activité canonique réduite et non-canonique élevée. Pour ANKRD6, nous avons identifié quatre nouvelles et rares mutations faux-sens chez 0,8% des patients ATN et deux chez 1,3% des contrôles. Notamment, seulement deux, des six mutations validées (p.Pro548Leu et p.Arg632His) ont démontré un effet significatif sur l’activité de ANKRD6 selon un mode hypomorphique. Pour CELSR1, nous avons identifié une mutation non-sens dans l'exon 1 qui supprime la majeure partie de la protéine et une délétionde 12 pb. Cette perte de nucléotides ne change pas le cadre de lecture et élimine un motif putatif de phosphorylation par la PKC " SSR ". Nous avons également détecté un total de 13 nouveaux et rares variants faux-sens qui avaient été prédits comme étant pathogènes in silico. Nos données confirment le rôle inhibiteur de Lrp6 dans la signalisation PCP pendant la neurulation et indiquent aussi que les mutations faux-sens identifiées chez LRP6 et ANKRD6 pourraient affecter un équilibre réciproque et un antagonisme très sensible à un dosage précis entre les deux voies Wnt. Ces variants peuvent aussi agir comme facteurs prédisposants aux ATN. En outre, nos résultats impliquent aussi CELSR1 comme un facteur de risque pour les anomalies du tube neural ou l’agénésie caudale. Nos résultats fournissent des preuves supplémentaires que la voie de signalisation PCP a un rôle pathogène dans ces malformations congénitales et un outil important pour mieux comprendre leurs mécanismes moléculaires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder haracterized by extreme sensitivity to actinic pigmentation changes in the skin and increased incidence of skin cancer. In some cases, patients are affected by neurological alterations. XP is caused by mutations in 8 distinct genes (XPA through XPG and XPV). The XP-V (variant) subtype of the disease results from mutations in a gene (XPV, also named POLH) which encodes for Polg, a member of the Y-DNA polymerase family. Although the presence and severity of skin and neurological dysfunctions differ between XP subtypes, there are overlapping clinical features among subtypes such that the sub-type cannot be deduced from the clinical features. In this study, in order to overcome this drawback, we undertook whole-exome sequencing in two XP sibs and their father. We identified a novel homozygous nonsense mutation (c.897T.G, p.Y299X) in POLH which causes the disease. Our results demonstrate that next generation sequencing is a powerful approach to rapid determination of XP genetic etiology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Efficient gene expression involves a trade-off between (i) premature termination of protein synthesis; and (ii) readthrough, where the ribosome fails to dissociate at the terminal stop. Sense codons that are similar in sequence to stop codons are more susceptible to nonsense mutation, and are also likely to be more susceptible to transcriptional or translational errors causing premature termination. We therefore expect this trade-off to be influenced by the number of stop codons in the genetic code. Although genetic codes are highly constrained, stop codon number appears to be their most volatile feature. Results In the human genome, codons readily mutable to stops are underrepresented in coding sequences. We construct a simple mathematical model based on the relative likelihoods of premature termination and readthrough. When readthrough occurs, the resultant protein has a tail of amino acid residues incorrectly added to the C-terminus. Our results depend strongly on the number of stop codons in the genetic code. When the code has more stop codons, premature termination is relatively more likely, particularly for longer genes. When the code has fewer stop codons, the length of the tail added by readthrough will, on average, be longer, and thus more deleterious. Comparative analysis of taxa with a range of stop codon numbers suggests that genomes whose code includes more stop codons have shorter coding sequences. Conclusions We suggest that the differing trade-offs presented by alternative genetic codes may result in differences in genome structure. More speculatively, multiple stop codons may mitigate readthrough, counteracting the disadvantage of a higher rate of nonsense mutation. This could help explain the puzzling overrepresentation of stop codons in the canonical genetic code and most variants.