927 resultados para Drug Discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomics encompasses a range of powerful technologies that can be applied at all levels of gene expression, from transcription to mRNA translation. Collectively, these technologies have great potential for improving drug discovery, both target and molecule recognition, and development. In this article we review the current and potential future status of established and novel genomic methods within drug discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) are the targets of over half of all prescribed drugs today. The UniProt database has records for about 800 proteins classified as GPCRs, but drugs have only been developed against 50 of these. Thus, there is huge potential in terms of the number of targets for new therapies to be designed. Several breakthroughs in GPCRs biased pharmacology, structural biology, modelling and scoring have resulted in a resurgence of interest in GPCRs as drug targets. Therefore, an international conference, sponsored by the Royal Society, with world-renowned researchers from industry and academia was recently held to discuss recent progress and highlight key areas of future research needed to accelerate GPCR drug discovery. Several key points emerged. Firstly, structures for all three major classes of GPCRs have now been solved and there is increasing coverage across the GPCR phylogenetic tree. This is likely to be substantially enhanced with data from x-ray free electron sources as they move beyond proof of concept. Secondly, the concept of biased signalling or functional selectivity is likely to be prevalent in many GPCRs, and this presents exciting new opportunities for selectivity and the control of side effects, especially when combined with increasing data regarding allosteric modulation. Thirdly, there will almost certainly be some GPCRs that will remain difficult targets because they exhibit complex ligand dependencies and have many metastable states rendering them difficult to resolve by crystallographic methods. Subtle effects within the packing of the transmembrane helices are likely to mask and contribute to this aspect, which may play a role in species dependent behaviour. This is particularly important because it has ramifications for how we interpret pre-clinical data. In summary, collaborative efforts between industry and academia have delivered significant progress in terms of structure and understanding of GPCRs and will be essential for resolving problems associated with the more difficult targets in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Medicina (Neurocirurgia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to contribute to drug discovery and development (DDD) for tauopathies, while expanding our knowledge on this group of neurodegenerative disorders, including Alzheimer’s disease (AD). Using yeast, a recognized model for neurodegeneration studies, useful models were produced for the study of tau interaction with beta-amyloid (Aβ), both AD hallmark proteins. The characterization of these models suggests that these proteins co-localize and that Aβ1-42, which is toxic to yeast, is involved in tau40 phosphorylation (Ser396/404) via the GSK-3β yeast orthologue, whereas tau seems to facilitate Aβ1-42 oligomerization. The mapping of tau’s interactome in yeast, achieved with a tau toxicity enhancer screen using the yeast deletion collection, provided a novel framework, composed of 31 genes, to identify new mechanisms associated with tau pathology, as well as to identify new drug targets or biomarkers. This genomic screen also allowed to select the yeast strain mir1Δ-tau40 for development of a new GPSD2TM drug discovery screening system. A library of unique 138 marine bacteria extracts, obtained from the Mid-Atlantic Ridge hydrothermal vents, was screened with mir1Δ-tau40. Three extracts were identified as suppressors of tau toxicity and constitute good starting points for DDD programs. mir1Δ strain was sensitive to tau toxicity, relating tau pathology with mitochondrial function. SLC25A3, the human homologue of MIR1, codes for the mitochondrial phosphate carrier protein (PiC). Resorting to iRNA, SLC25A3 expression was silenced in human neuroglioma cells, as a first step towards the engineering of a neural model for replicating the results obtained in yeast. This model is essential to understand the mechanisms of tau toxicity at the mitochondrial level and to validate PiC as a relevant drug target. The set of DDD tools here presented will foster the development of innovative and efficacious therapies, urgently needed to cope with tau-related disorders of high human and social-economic impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there have been major developments in the understanding of the cell cycle. It is now known that normal cellular proliferation is tightly regulated by the activation and deactivation of a series of proteins that constitute the cell cycle machinery. The expression and activity of components of the cell cycle can be altered during the development of a variety of diseases where aberrant proliferation contributes to the pathology of the illness. Apart from yielding a new source of untapped therapeutic targets, it is likely that manipulating the activity of such proteins in diseased states will provide an important route for treating proliferative disorders, and the opportunity to develop a novel class of future medicines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As more and more evidence has become available, the link between gene and emergent disease has been made including cancer, heart disease and parkinsonism. Analyzing the diseases and designing drugs with respect to the gene and protein level obviously help to find the underlying causes of the diseases, and to improve their rate of cure. The development of modern molecular biology, biochemistry, data collection and analysis techniques provides the scientists with a large amount of gene data. To draw a link between genes and their relation to disease outcomes and drug discovery is a big challenge: How to analyze large datasets and extract useful knowledge? Combining bioinformatics with drug discovery is a promising method to tackle this issue. Most techniques of bioinformatics are used in the first two phases of drug discovery to extract interesting information and find important genes and/or proteins for speeding the process of drug discovery, enhancing the accuracy of analysis and reducing the cost. Gene identification is a very fundamental and important technique among them. In this paper, we have reviewed gene identification algorithms and discussed their usage, relationships and challenges in drug discovery and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug discovery is the process of discovering and designing drugs, which includes target identification, target validation, lead identification, lead optimization and introduction of the new drugs to the public. This process is very important, involving analyzing the causes of the diseases and finding ways to tackle them. Objective: The problems we must face include: i) that this process is so long and expensive that it might cost millions of dollars and take a dozen years; and ii) the accuracy of identification of targets is not good enough, which in turn delays the process. Introducing bioinformatics into the drug discovery process could contribute much to it. Bioinformatics is a booming subject combining biology with computer science. It can explore the causes of diseases at the molecular level, explain the phenomena of the diseases from the angle of the gene and make use of computer techniques, such as data mining, machine learning and so on, to decrease the scope of analysis and enhance the accuracy of the results so as to reduce the cost and time. Methods: Here we describe recent studies about how to apply bioinformatics techniques in the four phases of drug discovery, how these techniques improve the drug discovery process and some possible difficulties that should be dealt with. Results: We conclude that combining bioinformatics with drug discovery is a very promising method although it faces many problems currently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Development of an effective, safe and targeted drug delivery system to fight cancer and other diseases is a prime focus in the area of drug discovery. The emerging field of nanotechnology has revolutionised the way cancer therapy and diagnosis is achieved primarily due to the recent advances in material engineering and drug availability. Further, the recognition of the crucial role played by anti-apoptotic proteins such as survivin, has initiated the development of therapeutics that can target this protein as an attempt to develop alternative cancer therapies. However, a key challenge faced in drug development is the efficient delivery of survivin-targeted molecules to specific areas in the body.Areas covered: This review primarily focuses on the different strategies employing nanotechnology for targeting survivin expressed in human cancers. Different nanomaterials incorporating nucleic molecules or drugs targeted at survivin are discussed and the results obtained from studies are highlighted.Expert opinion: There are extensive studies reporting different treatment regimens for cancer, however, they still result in systemic toxicity, reduced bioavailability and ineffective delivery. Novel approaches involve the use of biocompatible nanomaterials together with gene or drug molecules to target proteins such as survivin, which is overexpressed in cancerous cells. These nanoformulations allow the benefits of protecting easily degradable molecules, allow controlled release, and enhance targeted delivery and effectiveness. Hence, nanotherapy utilizing survivin targeting can be considered to play a key role in the development of personalized nanomedicine for cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently a crisis in drug discovery for neuropsychiatric disorders, with a profound, yet unexpected drought in new drug development across the spectrum. In this commentary, the sources of this dilemma and potential avenues to redress the issue are explored. These include a critical review of diagnostic issues and of selection of participants for clinical trials, and the mechanisms for identifying new drugs and new drug targets. Historically, the vast majority of agents have been discovered serendipitously or have been modifications of existing agents. Serendipitous discoveries, based on astute clinical observation or data mining, remain a valid option, as is illustrated by the suggestion in the paper by Wahlqvist and colleagues that treatment with sulfonylurea and metformin reduces the risk of affective disorder. However, the identification of agents targeting disorder-related biomarkers is currently proving particularly fruitful. There is considerable hope for genetics as a purist, pathophysiologically valid pathway to drug discovery; however, it is unclear whether the science is ready to meet this promise. Fruitful paradigms will require a break from the orthodoxy, and creativity and risk may well be the fingerprints of success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.

Relevância:

100.00% 100.00%

Publicador: