940 resultados para Bacterial infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster's microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project expands upon the discovery that scabies mites produce protein molecules that interfere with the human complement cascade, disrupting a critical component of the early stages of the host immune response. This is believed to provide an optimal environment for the development of commonly associated secondary bacterial infections. The thesis investigated the effect of two distinct scabies mite proteins, namely SMS B4 and SMIPP-S I1, on the in vitro proliferation of Group A Streptococcus in whole human blood. Additionally, in vitro immunoassays were performed to determine if complement mediated opsonisation and phagocytosis were also disrupted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial persistent infections are responsible for a significant amount of the human morbidity and mortality. Unlike acute bacterial infections, it is very difficult to treat persistent bacterial infections (e.g. tuberculosis). Knowledge about the location of pathogenic bacteria during persistent infection will help to treat such conditions by designing novel drugs which can reach such locations. In this study, events of bacterial persistent infections were analyzed using game theory. A game was defined where the pathogen and the host are the two players with a conflict of interest. Criteria for the establishment of Nash equilibrium were calculated for this game. This theoretical model, which is very simple and heuristic, predicts that during persistent infections pathogenic bacteria stay in both intracellular and extracellular compartments of the host. The result of this study implies that a bacterium should be able to survive in both intracellular and extracellular compartments of the host in order to cause persistent infections. This explains why persistent infections are more often caused by intracellular pathogens like Mycobacterium and Salmonella. Moreover, this prediction is in consistence with the results of previous experimental studies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) has important functions in innate immunity and regulation of immune functions. Here, the role of iNOS in the pathogenesis of various intracellular bacterial infections is discussed. These pathogens have also evolved a broad array of strategies to repair damage by reactive nitrogen intermediates, and to suppress or inhibit functions of iNOS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

CpG-containing oligodeoxynucleotides (ODNs) are known to be immunostimulatory in vertebrate systems and can activate both innate and adaptive immune responses. In this report, we described the selection, identification, and analysis of CpG motifs with immunoprotective effects in Japanese flounder. Sixteen CpG ODNs were synthesized and examined for the ability to inhibit bacterial dissemination in Japanese flounder blood. Four ODNs with the strongest inhibitory effects were selected and mixed to form ODNs 4M. In addition, a plasmid, pCN6, was constructed that contains the sequences of the four selected ODNs. When administered into Japanese flounder via intraperitoneal injection, both ODNs 4M and pCN6 could, in dose and time dependent manners, afford short-term protection against the infections of two different bacterial pathogens. Immunological analyses showed that ODNs 4M and, especially, pCN6 activated head kidney macrophages and enhanced serum bactericidal activity via probably the alternative pathway of complement activation. When used as a DNA vaccine to immunize Japanese flounder, pCN6 conferred apparent protections (42.9% and 52.6%, respectively, in terms of relative percent survival) against the challenges of two different fish pathogens at 4-week post-vaccination. Transcriptional analysis showed that vaccination with pCN6 upregulated the expression of the genes encoding NKEF, MHC II alpha, IL-1 beta, Mx, and MHC I alpha. These results demonstrate that ODNs 4M and pCN6 are immunostimulatory in Japanese flounder and can induce short- and long-term nonspecific protections against bacterial infections. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing appreciation of the polymicrobial nature of bacterial infections associated with Cystic Fibrosis (CF) and of the important role for interactions in influencing bacterial virulence and response to therapy. Patients with CF are co-infected with Pseudomonas aeruginosa, Burkholderia cenocepacia and Stenotrophomonas maltophilia. These latter bacteria produce signal molecules of the diffusible signal factor (DSF) family, which are cis-2-unsaturated fatty acids. Previous studies showed that DSF from S. maltophilia leads to altered biofilm formation and increased tolerance to antibiotics in P. aeruginosa and that these responses require the P. aeruginosa sensor kinase PA1396. The work in this thesis aims of further elucidate the influence and mechanism of DSF signalling on P. aeruginosa and examine the role that such interspecies signalling play in infection of the CF airway. Next generation sequencing technologies targeting the 16S ribosomal RNA gene were applied to DNA and RNA isolated from sputum taken from cohorts of CF and non-CF subjects to characterise the bacterial community. In parallel, metabolomics analysis of sputum provided insight into the environment of the CF airway. This analysis revealed a number of observations including; that differences in metabolites occur in sputum taken from clinically stable CF patients and those with exacerbation and DNA- and RNA-based methods suggested that a strong relationship existed between the abundance of specific strict anaerobes and fluctuations in the level of metabolites during exacerbation. DSF family signals were also detected in the sputum and a correlation with the presence of DSFproducing organisms was observed. To examine the signal transduction mechanisms used by P. aeruginosa, bioinformatics with site directed mutagenesis were employed to identify signalling partners for PA1396. A pathway suggesting a role for a number of proteins in the regulation of several factors following DSF recognition by PA1396 were observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The inoculum effect (IE) refers to the decreasing efficacy of an antibiotic with increasing bacterial density. It represents a unique strategy of antibiotic tolerance and it can complicate design of effective antibiotic treatment of bacterial infections. To gain insight into this phenomenon, we have analyzed responses of a lab strain of Escherichia coli to antibiotics that target the ribosome. We show that the IE can be explained by bistable inhibition of bacterial growth. A critical requirement for this bistability is sufficiently fast degradation of ribosomes, which can result from antibiotic-induced heat-shock response. Furthermore, antibiotics that elicit the IE can lead to 'band-pass' response of bacterial growth to periodic antibiotic treatment: the treatment efficacy drastically diminishes at intermediate frequencies of treatment. Our proposed mechanism for the IE may be generally applicable to other bacterial species treated with antibiotics targeting the ribosomes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dendritic cells (DCs) secrete cytokines such as interleukin-23 (IL-23) when stimulated with certain Toll-like receptor (TLR) agonists and infected with pathogens such as P. aeruginosa. IL- 23 is a proinflammatory cytokine that plays a critical role in the proliferation and differentiation of the IL-17 producing Th17- CD4 T helper cells. The lack of efficient cytokine production from antigen-presenting cells, such as DCs, can impact CD4 differentiation and thus impair the immune responses against pathogens. Clearance of some bacterial infections, such as Klebsiella pneumonia and Listeria monocytogenes has been shown to be dependent on the induction of IL-23 and therefore, deregulation of these cytokines as a direct result of virus infection may impede immune responses to secondary infections. Here, an inhibition of TLR ligand or P. aeruginosa-induced IL- 23 expression in Lymphocytic Choriomeningitis Virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs) has been demonstrated, indicating that an important function of these cells is disrupted during virus/bacterial coinfection. While production of TNF-α was unaffected in LPS stimulated cells, TNF-α was significantly inhibited in bacterium infected cells by LCMV. Type I IFN in LPS or LCMV infected cell was not detected and therefore, ruling out the possibility of cytokine suppression by Type I IFN. The production of IL-10 was high in BMDCs infected with LCMV and stimulated with LPS or bacteria. Analysis of multiple cytokines produced in this coinfection model demonstrated that LCMV infection impacts specific cytokine production upon LPS or bacterium infection, which may be important for bacterial clearance. This data is important for future immunotherapy use in viral/bacterial coinfection scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. Mounting an immune response is likely to be costly in terms of energy and nutrients, and so it is predicted that dietary intake should change in response to infection to offset these costs. The present study focuses on the interactions between a specialist grass-feeding caterpillar species, the African armyworm Spodoptera exempta, and an opportunist bacterium, Bacillus subtilis.
2. The main aims of the study were (i) to establish the macronutrient costs to the insect host of surviving a systemic bacterial infection, (ii) to determine the relative importance of dietary protein and carbohydrate to immune system functions, and (iii) to determine whether there is an adaptive change in the host's normal feeding behaviour in response to bacterial challenge, such that the nutritional costs of resisting infection are offset.
3. We show that the survival of bacterially infected larvae increased with increasing dietary protein-to-carbohydrate (P:C) ratio, suggesting a protein cost associated with bacterial resistance. As dietary protein levels increased, there was an increase in antibacterial activity, phenoloxidase (PO) activity and protein levels in the haemolymph, providing a potential source for this protein cost. However, there was also evidence for a physiological trade-off between antibacterial activity and phenoloxidase activity, as larvae whose antibacterial activity levels were elevated in response to immune activation had reduced PO activity.
4. When given a choice between two diets varying in their P:C ratios, larvae injected with a sub-lethal dose of bacteria increased their protein intake relative to control larvae whilst maintaining similar carbohydrate intake levels. These results are consistent with the notion that S. exempta larvae alter their feeding behaviour in response to bacterial infection in a manner that is likely to enhance the levels of protein available for producing the immune system components and other factors required to resist bacterial infections (‘self-medication’).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial infections are an increasing problem for human health. In fact, an increasing number of infections are caused by bacteria that are resistant to most antibiotics and their combinations. Therefore, the scientific community is currently searching for new solutions to fight bacteria and infectious diseases, without promoting antimicrobial resistance. One of the most promising strategies is the disruption or attenuation of bacterial Quorum Sensing (QS), a refined system that bacteria use to communicate. In a QS event, bacteria produce and release specific small chemicals, signal molecules - autoinducers (AIs) - into the environment. At the same time that bacterial population grows, the concentration of AIs in the bacterial environment increases. When a threshold concentration of AIs is reached, bacterial cells respond to it by altering their gene expression profile. AIs regulate gene expression as a function of cell population density. Phenotypes mediated by QS (QSphenotypes) include virulence factors, toxin production, antibiotic resistance and biofilm formation. In this work, two polymeric materials (linear polymers and molecularly imprinted nanoparticles) were developed and their ability to attenuate QS was evaluated. Both types of polymers should to be able to adsorb bacterial signal molecules, limiting their availability in the extracellular environment, with expected disruption of QS. Linear polymers were composed by one of two monomers (itaconic acid and methacrylic acid), which are known to possess strong interactions with the bacterial signal molecules. Molecularly imprinted polymer nanoparticles (MIP NPs) are particles with recognition capabilities for the analyte of interest. This ability is attained by including the target analyte at the synthesis stage. Vibrio fischeri and Aeromonas hydrophila were used as model species for the study. Both the linear polymers and MIP NPs, tested free in solutions and coated to surfaces, showed ability to disrupt QS by decreasing bioluminescence of V. fischeri and biofilm formation of A. hydrophila. No significant effect on bacterial growth was detected. The cytotoxicity of the two types of polymers to a fibroblast-like cell line (Vero cells) was also tested in order to evaluate their safety. The results showed that both the linear polymers and MIP NPs were not cytotoxic in the testing conditions. In conclusion, the results reported in this thesis, show that the polymers developed are a promising strategy to disrupt QS and reduce bacterial infection and resistance. In addition, due to their low toxicity, solubility and easy integration by surface coating, the polymers have potential for applications in scenarios where bacterial infection is a problem: medicine, pharmaceutical, food industry and in agriculture or aquaculture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective. To access the incidence of infectious problems after liver transplantation (LT). Design. A retrospective, single-center study. Materials and Methods. Patients undergoing LT from January 2008 to December 2011 were considered. Exclusion criterion was death occurring in the first 48 hours after LT. We determined the site of infection and the bacterial isolates and collected and compared recipient’s variables, graft variables, surgical data, post-LT clinical data. Results. Of the 492 patients who underwent LT and the 463 considered for this study, 190 (Group 1, 41%) developed at least 1 infection, with 298 infections detected. Of these, 189 microorganisms were isolated, 81 (51%) gram-positive bacteria (most frequently Staphylococcus spp). Biliary infections were more frequent (mean time of 160.4 167.7 days after LT); from 3 months after LT, gram-negative bacteria were observed (57%). Patients with infections after LT presented lower aminotransferase levels, but higher requirements in blood transfusions, intraoperative vasopressors, hemodialysis, and hospital stay. Operative and cold ischemia times were similar. Conclusion. We found a 41% incidence of all infections in a 2-year follow-up after LT. Gram-positive bacteria were more frequent isolated; however, negative bacteria were commonly isolated later. Clinical data after LT were more relevant for the development of infections. Donors’ variables should be considered in future analyses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis applies x-ray diffraction to measure he membrane structure of lipopolysaccharides and to develop a better model of a LPS bacterial melilbrane that can be used for biophysical research on antibiotics that attack cell membranes. \iVe ha'e Inodified the Physics department x-ray machine for use 3.'3 a thin film diffractometer, and have lesigned a new temperature and relative humidity controlled sample cell.\Ve tested the sample eel: by measuring the one-dimensional electron density profiles of bilayers of pope with 0%, 1%, 1G :VcJ, and 100% by weight lipo-polysaccharide from Pse'udo'lTwna aeTuginosa. Background VVe now know that traditional p,ntibiotics ,I,re losing their effectiveness against ever-evolving bacteria. This is because traditional antibiotic: work against specific targets within the bacterial cell, and with genetic mutations over time, themtibiotic no longer works. One possible solution are antimicrobial peptides. These are short proteins that are part of the immune systems of many animals, and some of them attack bacteria directly at the membrane of the cell, causing the bacterium to rupture and die. Since the membranes of most bacteria share common structural features, and these featuret, are unlikely to evolve very much, these peptides should effectively kill many types of bacteria wi Lhout much evolved resistance. But why do these peptides kill bacterial cel: '3 , but not the cells of the host animal? For gramnegative bacteria, the most likely reason is that t Ileir outer membrane is made of lipopolysaccharides (LPS), which is very different from an animal :;ell membrane. Up to now, what we knovv about how these peptides work was likely done with r !10spholipid models of animal cell membranes, and not with the more complex lipopolysa,echaricies, If we want to make better pepticies, ones that we can use to fight all types of infection, we need a more accurate molecular picture of how they \vork. This will hopefully be one step forward to the ( esign of better treatments for bacterial infections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Des études antérieures démontrent que les descendants de peuples européens et africains présentent des différences de susceptibilité à certaines maladies infectieuses. Ces différences suggèrent des variations interpopulationnelles de la réponse immunitaire qui résultent probablement de l’adaptation de ces individus aux pathogènes de leur environnement. Nous avons caractérisé la réponse immunitaire chez des descendants de peuples européens et africains à des infections bactériennes. Nous avons infecté des macrophages dérivés de monocytes de 30 Américains d’origine africaine (Africains) et de 31 Américains d’origine européenne (Européens) avec les pathogènes intracellulaires Listeria monocytogenes et Salmonella typhimurium pendant 4 heures, puis nous avons mesuré le niveau d’expression pangénomique des cellules infectées et non infectées par séquençage de l’ARNm. Nous avons estimé le niveau de contrôle de l’infection par les macrophages à 2, 4 et 24 heures post-infection en évaluant le taux de survie des bactéries. Nous avons observé que les Africains présentent significativement moins de bactéries intracellulaires après 4 et 24 heures que les Européens, suggérant que les Africains contrôlent mieux les infections bactériennes. Nous avons identifié des différences interpopulationnelles dans le niveau de sécrétion des cytokines et dans le niveau d’expression de certains gènes, ce qui suggère que les Africains modulent une réponse inflammatoire plus forte que les Européens. Nous avons démontré que plusieurs de ces gènes ont subi des évènements de sélection positive récents seulement chez les Européens. Notre étude a identifié plusieurs gènes candidats susceptibles d’influencer le cours des infections bactériennes chez les humains. Nos résultats indiquent que les différences dans la progression des maladies infectieuses entre les populations européennes et africaines seraient le résultat de la sélection naturelle.