977 resultados para Medical Cell Biology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The CDKN2A gene maps to chromosome 9p21-22 and is responsible for melanoma susceptibility in some families. Its product, p16, binds specifically to CDK4 and CDK6 in vitro and in vivo, inhibiting their kinase activity. CDKN2A is homozygously deleted or mutated in a large proportion of tumor cell lines and some primary tumors, including melanomas. The aim of this study was to investigate the involvement of CDKN2A and elucidate the mechanisms of p16 inactivation in a panel of 60 cell lines derived from sporadic melanomas. Twenty-six (43%) of the melanoma lines were homozygously deleted for CDKN2A, and an additional 15 (25%) lines carried missense, nonsense, or frameshift mutations. All but one of the latter group were shown by microsatellite analysis to be hemizygous for the region of 9p surrounding CDKN2A. p16 was detected by Western blotting in only five of the cell lines carrying mutations. Immunoprecipitation of p16 in these lines, followed by Western blotting to detect the coprecipitation of CDK4 and CDK6, revealed that p16 was functionally compromised in all cell lines but the one that carried a heterozygous CDKN2A mutation. In the remaining 19 lines that carried wild-type CDKN2A alleles, Western blot analysis and immunoprecipitation indicated that 11 cell lines expressed a wild-type protein. Northern blotting was performed on the remaining eight cell lines and revealed that one cell line carried an aberrantly sized RNA transcript, and two other cell lines failed to express RNA. The promoter was found to be methylated in five cell lines that expressed CDKN2A transcript but not p16. Presumably, the message seen by Northern blotting in these cell lines is the result of cross-hybridization of the total cDNA probe with the exon 1beta transcript. Microsatellite analysis revealed that the majority of these cell lines were hemi/homozygous for the region surrounding CDKN2A, indicating that the wild-type allele had been lost. In the 11 cell lines that expressed functional p16, microsatellite analysis revealed loss of heterozygosity at the markers immediately surrounding CDKN2A in five cases, and the previously characterized R24C mutation of CDK4 was identified in one of the remaining 6 lines. These data indicate that 55 of 60 (92%) melanoma cell lines demonstrated some aberration of CDKN2A or CDK4, thus suggesting that this pathway is a primary genetic target in melanoma development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CDKN2A, the gene encoding the cell-cycle inhibitor p16CDKN2A, was first identified in 1994. Since then, somatic mutations have been observed in many cancers and germline alterations have been found in kindreds with familial atypical multiple mole/melanoma (FAMMM), also known as atypical mole syndrome. In this review we tabulate the known mutations in this gene and discuss specific aspects, particularly with respect to germline mutations and cancer predisposition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The majority of small-cell lung cancers (SCLCs) express p16 but not pRb. Given our previous study showing loss of pRb in Merkel cell carcinoma (MCC)/neuroendocrine carcinoma of the skin and the clinicopathological similarities between SCLC and MCC, we wished to determine if this was also the case in MCC. Twenty-nine MCC specimens from 23 patients were examined for deletions at 10 loci on 9p and 1 on 9q. No loss of heterozygosity (LOH) was seen in 9 patients including 2 for which tumour and cell line DNAs were examined. Four patients had LOH for all informative loci on 9p. Ten tumours showed more limited regions of loss on 9p, and from these 2 common regions of deletion were determined. Half of all informative cases had LOH at D9S168, the most telomeric marker examined, and 3 specimens showed loss of only D9S168. A second region (IFNA-D9S126) showed LOH in 10 (44%) cases, and case MCC26 showed LOH for only D9S126, implicating genes centromeric of the CDKN2A locus. No mutations in the coding regions of p16 were seen in 7 cell lines tested, and reactivity to anti-p16 antibody was seen in all 11 tumour specimens examined and in 6 of 7 cell lines from 6 patients. Furthermore, all cell lines examined reacted with anti-p14(ARF) antibody. These results suggest that neither transcript of the CDKN2A locus is the target of deletions on 9p in MCC and imply the existence of tumour-suppressor genes mapping both centromeric and telomeric of this locus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deletions detected in cytogenetic and loss of heterozygosity (LOH) studies indicate that at least one tumour suppressor gene maps to the long arm of chromosome 10. Previous deletion mapping studies have observed LOH on 10q in about 30% of melanomas analysed. The PTEN gene, mapping to chromosome band 10q23.3, encodes a protein with both lipid and protein phosphatase activity. Somatic mutations and deletions in have been detected in a variety of cell lines and tumours, including melanoma samples. We performed mutation analyses and extensive allelic loss studies to investigate the role this gene plays in melanoma pathogenesis. We found that a total of 34 out of 57 (60%) melanoma cell lines carried hemizygous deletions of chromosome 10q encompassing the PTEN locus. A further three cell lines carried smaller deletions excluding PTEN. Inactivation of both PTEN alleles by exon-specific homozygous deletion or mutation was observed in 13 out of 57 (23%) melanoma cell lines. The mutation spectrum observed does not indicate an important role for ultraviolet radiation in the genesis of these mutations, and evidence from three cell lines supports the acquisition of PTEN aberrations in culture. Ten out of 49 (20%) matched melanoma tumour/normal samples harboured hemizygous deletions of either the whole chromosome or most of the long arm. Mutations within were detected in only one of the 10 tumours demonstrating LOH at 10q23 that were analysed. These results suggest that PTEN inactivation may be important for the propagation of melanoma cells in culture, and that another chromosome 10 tumour suppressor gene may be important for melanoma pathogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endocytosis is the process by which cells internalise molecules including nutrient proteins from the extracellular media. In one form, macropinocytosis, the membrane at the cell surface ruffles and folds over to give rise to an internalised vesicle. Negatively charged phospholipids within the membrane called phosphoinositides then undergo a series of transformations that are critical for the correct trafficking of the vesicle within the cell, and which are often pirated by pathogens such as Salmonella. Advanced fluorescent video microscopy imaging now allows the detailed observation and quantification of these events in live cells over time. Here we use these observations as a basis for building differential equation models of the transformations. An initial investigation of these interactions was modelled with reaction rates proportional to the sum of the concentrations of the individual constituents. A first order linear system for the concentrations results. The structure of the system enables analytical expressions to be obtained and the problem becomes one of determining the reaction rates which generate the observed data plots. We present results with reaction rates which capture the general behaviour of the reactions so that we now have a complete mathematical model of phosphoinositide transformations that fits the experimental observations. Some excellent fits are obtained with modulated exponential functions; however, these are not solutions of the linear system. The question arises as to how the model may be modified to obtain a system whose solution provides a more accurate fit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To identify microRNAs potentially involved in melanomagenesis, we compared microRNA expression profiles between melanoma cell lines and cultured melanocytes. The most differentially expressed microRNA between the normal and tumor cell lines was miR-211. We focused on this pigment-cell-enriched miRNA as it is derived from the microphthalmia-associated transcription factor (MITF)-regulated gene, TRPM1 (melastatin). We find that miR-211 expression is greatly decreased in melanoma cells and melanoblasts compared to melanocytes. Bioinformatic analysis identified a large number of potential targets of miR-211, including POU3F2 (BRN2). Inhibition of miR-211 in normal melanocytes resulted in increased BRN2 protein, indicating that endogenous miR-211 represses BRN2 in differentiated cells. Over-expression of miR-211 in melanoma cell lines changed the invasive potential of the cells in vitro through directly targeting BRN2 translation. We propose a model for the apparent non-overlapping expression levels of BRN2 and MITF in melanoma, mediated by miR-211 expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prior in vitro studies, utilizing 31Pn uclear magnetic resonance (31PN MR) to measure the chemical shift (CT) of 0-ATP and lengthening of the phosphocreatine spin-spin (7"') relaxation time, suggested an assessment of their efficacy in measuring magnesium depletion in vivo. Dietary magnesium depletion (Me$) produced markedly lower magnesium in plasma (0.44 vs 1. I3 mmol/liter) and bone (1 30 vs 190 pmol/g) but much smaller changes in muscle (41 vs 45 pmol/g, P < 0.01), heart (42.5 vs 44.6 prnol/g), and brain (30 vs 32 pmollg). NMR experiments in anesthetized rats in a Bruker 7-T vertical bore magnet showed that in M e $ rats there was a significant change in brain j3-ATP shift (16.15 vs 16.03 ppm, P < 0.05). These chemical shifts gave a calculated free [Mg"] of 0.71 mM (control) and 0.48 mM (MgZ+$). In muscle the change in j3-ATP shift was not significant (Me$ 15.99 ppm, controls 15.96 ppm), corresponding to a calculated free M P of 0.83 and 0.95 mM, respectively. Phosphccreatine Tz (Carr-Purcell, spin-echo pulse sequence) was no different with M e $ in muscle in vivo (surface coil) (M$+$ 136, control 142 ms) or in isolated perfused hearts (Helmholtz coil) (control 83, M e $ 92 ms). 3'P NMR is severely limited in its ability to detect dietary magnesium depletion in vivo. Measurement of j3-ATP shift in brain may allow studies of the effects of interaction in group studies but does not allow prediction of an individual magnesium status.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An association between the metabolic syndrome and reduced testosterone levels has been identified, and a specific inverse relationship between insulin and testosterone levels suggests that an important metabolic crosstalk exists between these two hormonal axes; however, the mechanisms by which insulin and androgens may be reciprocally regulated are not well described. Androgen-dependant gene pathways regulate the growth and maintenance of both normal and malignant prostate tissue, and androgen-deprivation therapy (ADT) in patients exploits this dependence when used to treat recurrent and metastatic prostate cancer resulting in tumour regression. A major systemic side effect of ADT includes induction of key features of the metabolic syndrome and the consistent feature of hyperinsulinaemia. Recent studies have specifically identified a correlation between elevated insulin and high-grade PCa and more rapid progression to castrate resistant disease. This paper examines the relationship between insulin and androgens in the context of prostate cancer progression. Prostate cancer patients present a promising cohort for the exploration of insulin stabilising agents as adjunct treatments for hormone deprivation or enhancers of chemosensitivity for treatment of advanced prostate cancer.