59 resultados para Sponges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are under threat, exerted by a number of interacting effects inherent to the present climate change, including ocean acidification and global warming. Bioerosion drives reef degradation by recycling carbonate skeletal material and is an important but understudied factor in this context. Twelve different combinations of pCO2 and temperature were applied to elucidate the consequences of ocean acidification and global warming on the physiological response and bioerosion rates of the zooxanthellate sponge Cliona orientalis-one of the most abundant and effective bioeroders on the Great Barrier Reef, Australia. Our results confirm a significant amplification of the sponges' bioerosion capacity with increasing pCO2, which is expressed by more carbonate being chemically dissolved by etching. The health of the sponges and their photosymbionts was not affected by changes in pCO2, in contrast to temperature, which had significant negative impacts at higher levels. However, we could not conclusively explain the relationship between temperature and bioerosion rates, which were slightly reduced at both colder as well as warmer temperatures than ambient. The present findings on the effects of ocean acidification on chemical bioerosion, however, will have significant implications for predicting future reef carbonate budgets, as sponges often contribute the lion's share of internal bioerosion on coral reefs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In many marine biogeographic realms, bioeroding sponges dominate the internal bioerosion of calcareous substrates such as mollusc beds and coral reef framework. They biochemically dissolve part of the carbonate and liberate so-called sponge chips, a process that is expected to be facilitated and accelerated in a more acidic environment inherent to the present global change. The bioerosion capacity of the demosponge Cliona celata Grant, 1826 in subfossil oyster shells was assessed via alkalinity anomaly technique based on 4 days of experimental exposure to three different levels of carbon dioxide partial pressure (pCO2) at ambient temperature in the cold-temperate waters of Helgoland Island, North Sea. The rate of chemical bioerosion at present-day pCO2 was quantified with 0.08-0.1 kg/m**2/year. Chemical bioerosion was positively correlated with increasing pCO2, with rates more than doubling at carbon dioxide levels predicted for the end of the twenty-first century, clearly confirming that C. celata bioerosion can be expected to be enhanced with progressing ocean acidification (OA). Together with previously published experimental evidence, the present results suggest that OA accelerates sponge bioerosion (1) across latitudes and biogeographic areas, (2) independent of sponge growth form, and (3) for species with or without photosymbionts alike. A general increase in sponge bioerosion with advancing OA can be expected to have a significant impact on global carbonate (re)cycling and may result in widespread negative effects, e.g. on the stability of wild and farmed shellfish populations, as well as calcareous framework builders in tropical and cold-water coral reef ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Mediterranean Sea, infralittoral and circalittoral rocky bottoms (from 15 to 120 m) are characterized by a biogenic habitat, named "coralligenous", formed by the concretion of calcareous organisms, mainly algal thalli, and- to a lesser extent- by animal skeletons. This complex habitat is inhabited by a rich fauna that belongs to different taxonomic groups. Sponges, bryozoans, cnidarians and ascidians are the most common sessile organisms that inhabit the area while crustacean and molluscs are the common mobile organisms. Little information on the diversity of the molluscs that thrive in the coralligenous habitat is known while this information is highly important for biodiversity management purposes. After thoroughly studying the available and accessible published literature, a database for the molluscs of the coralligenous habitat has been designed and implemented for the collection and management of this information. From its index compilation more than 511 species of molluscs have been recorded so far from the coralligenous formations, the majority of which belongs to the class Gastropoda (357 sp.) followed by the Bivalvia (137 sp.), Polyplacophora (14 sp.), Cephalopoda (2 sp.) and Scaphopoda (1 sp.). Among these, the gastropod Luria lurida (Linnaeus, 1758) and Charonia lampas (Linnaeus, 1758), the endemic bivalve Pinna nobilis Linnaeus, 1758 and the endolithic bivalve Lithophaga lithophaga (Linnaeus, 1758), are protected by international conventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent episodes of mass mortalities in the Mediterranean Sea have been reported for the closely related marine sponges Ircinia fasciculata and I. variabilis, which live in sympatry. In this context, the assessment of the genetic diversity, bottlenecks and connectivity of these sponges has become urgent in order to evaluate the potential effects of mass mortalities on their latitudinal range. Our study aims to establish 1.) the genetic structure, connectivity, and signs of bottlenecks across the populations of I. fasciculata, and 2.) the hybridization levels between I. fasciculata and I. variabilis. To accomplish the first objective, 194 individuals of I. fasciculata from 12 locations across the Mediterranean were genotyped at 14 microsatellite loci. For the second objective, mitochondrial cytochrome c oxidase subunit I sequences of 16 individuals from both species were analyzed along with genotypes at 12 microsatellite loci of 40 individuals coexisting in 3 Mediterranean populations. We detected strong genetic structure along the Mediterranean for I. fasciculata, with high levels of inbreeding in all locations and bottleneck signs in most locations. Oceanographic barriers like the Almeria-Oran front, North-Balearic front, and the Ligurian-Thyrrenian barrier seem to be impeding gene flow for I. fasciculata, adding population divergence to the pattern of isolation by distance derived from the low dispersal abilities of sponge larvae. Hybridization between both species occurred in some populations, which might be increasing genetic diversity and somewhat palliating the genetic loss caused by population decimation in I. fasciculata

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Siliceous sponges have survived pre-historical mass extinction events caused by ocean acidification and recent studies suggest that siliceous sponges will continue to resist predicted increases in ocean acidity. In this study, we monitored silica biomineralization in the Hawaiian sponge Mycale grandis under predicted pCO2 and sea surface temperature scenarios for 2100. Our goal was to determine if spicule biomineralization was enhanced or repressed by ocean acidification and thermal stress by monitoring silica uptake rates during short-term (48 h) experiments and comparing biomineralized tissue ratios before and after a long-term (26 d) experiment. In the short-term experiment, we found that silica uptake rates were not impacted by high pCO2 (1050 µatm), warmer temperatures (27°C), or combined high pCO2 with warmer temperature (1119 µatm; 27°C) treatments. The long-term exposure experiments revealed no effect on survival or growth rates of M. grandis to high pCO2 (1198 µatm), warmer temperatures (25.6°C), or combined high pCO2 with warmer temperature (1225 µatm, 25.7°C) treatments, indicating that M. grandis will continue to prosper under predicted increases in pCO2 and sea surface temperature. However, ash-free dry weight to dry weight ratios, subtylostyle lengths, and silicified weight to dry weight ratios decreased under conditions of high pCO2 and combined pCO2 warmer temperature treatments. Our results show that rising ocean acidity and temperature have marginal negative effects on spicule biomineralization and will not affect sponge survival rates of M. grandis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km**2 of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One the most interesting features of ocean sedimentation is the manganese formations on the surface of the ocean floor in some areas. These are especially widespread in the Pacific Ocean as concretions, grains, and crusts on rock fragments and bedrock outcrops. Iron-manganese concretions are the most abundant as they completely cover about 10% of the bottom of the Pacific Ocean where there are ore concentrations. The concretions occupy from 20-50% of the bottom and up to 80-90% on separate submarine rises. Such concretions are found in different types of bottom deposits, from abyssal red clays to terrigenous muds, but they occur most widely in red clays and quite often in carbonate muds. Their shape and their dimensions are very diverse and change from place to place, from station to station, varying from 0.5-20 cm. They may be oval, globular, reniform, or slaggy and often they are fiat or isometric concretions of an indefinite shape. The concretions generally have nuclei of pumice, basalt fragments, clayey and tuffaceous material, sharks' teeth, whale ossicles, and fossil sponges. Most concretions have concentric layers, combined with dendritic ramifications of iron and manganese oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc concentration of siliceous sponge spicules was determined from spicules recovered from four sediment cores spanning the last 160 kyr, from the Campbell Plateau region southeast of New Zealand. Zinc/Si results showed little difference between Holocene and glacial aged spicules. An increase in Zn/Si was observed for core Y14, where Zn/Si peaked at about 0.6 ?mol/mol during marine isotope stages 5a-5b. To better understand the role carbon export has on sponge Zn/Si, we explored the strong relationship observed between surficial sediment particulate organic carbon (POC) and the Zn/Si of sponge silica and related this to sediment trap POC flux estimates. Conversion of the Zn/Si records to benthic POC fluxes suggests that there has been little change in the amount of POC reaching Campbell Plateau sediments over the past 30 kyr. These results suggest that surface productivity over the Campbell Plateau has remained relatively low over the past 160 kyr and suggests that glacial productivity was not significantly higher than the present day. Finally, this work reveals that living marine sponges appear to act as the biological equivalents of moored sediment traps, recording the flux of POC to the seafloor by archiving zinc associated with sinking POC in the growing silica skeleton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the geosphere, germanium (Ge) has a chemical behavior close to that of silicon (Si), and Ge commonly substitutes for Si (in small proportions) in silicates. Studying the evolution of the respective proportions of Ge and Si through time allows us to better constrain the global Si cycle. The marine inventory of Ge present as dissolved germanic acid is facing two main sinks known through the study of present sediments: 1) incorporation into diatom frustules and transfer to sediments by these "shuttles", 2) capture of Ge released to pore water through frustule dissolution by authigenic mineral phases forming within reducing sediments. Our goals are to determine whether such a bio-induced transfer of Ge is also achieved by radiolarian and whether Ge could be trapped directly from seawater into authigenic phases with no intervention of opal-secreting organisms (shuttles). To this end, we studied two Paleozoic radiolarite formations and geological formations dated of Devonian, Jurassic and Cretaceous, deposited under more or less drastic redox conditions. Our results show that the Ge/Si values observed for these radiolarites are close to (slightly above) those measured from modern diatoms and sponges. In addition, our results confirm what is observed with some present-day reducing sediments: the ancient sediments that underwent reducing depositional conditions are authigenically enriched in Ge. Furthermore, it is probable that at least a part of the authigenic Ge came directly from seawater. The recurrence and extent (through time and space) of anoxic conditions affecting sea bottoms have been quite important through the geological times; consequently, the capture of Ge by reducing sediments must have impacted Ge distribution and in turn, the evolution of the seawater Ge/Si ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset gives the collecting information of New England Seamount Geodia species from the Yale Peabody Museum. Museum numbers, fixation processing and Genbank accession numbers are also given.