244 resultados para IODINE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iodine speciation analysis was carried out upon seawater samples collected in July 1993 at the DYFAMED station (43 °25?N, 7 °52?E) located in the northwestern Mediterranean Sea. Dissolved iodate and iodide were directly determined by differential pulse polarography and cathodic stripping square wave voltammetry, respectively, and organically bound iodine was estimated by wet-chemical oxidation with sodium hypochlorite. Iodate is the predominant species ranging from 416 nM in surface waters to 480 nM in bottom waters. Iodide is present in significant concentrations up to 60 nM in surface waters, undetectable between 500 and 1000 m depth and present in very low but measurable concentrations (about 6 nM) in deep waters. The vertical profile of total free iodine demonstrates observable removal from surface waters, slight enrichment at about 200 m depth and constant there below. Up to 40 nM of organically bound iodine has been estimated between 20 to 30 m. Factorial analysis of different iodine species with biologically relevant parameters provided strong evidence for iodine biophilic features.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iodine and boron were analyzed in pore fluids, serpentinized ultramafic clasts, and the serpentinized mud matrix of the South Chamorro Seamount mud volcano (Ocean Drilling Program Leg 195 Site 1200) to determine the distribution of these elements in deep forearc settings. Similar analyses of clasts and muds from the Conical Seamount mud volcano (Leg 125 Site 779) were also carried out. Interstitial pore fluids are enriched in boron and iodine without appreciable change in chloride concentration relative to seawater. Both the ultramafic clasts and the associated serpentinized mud present the highest documented iodine concentrations for all types of nonsedimentary rocks (6.3-101.7 µmol/kg). Such high iodine concentrations, if commonplace in marine forearc settings, may constitute a significant, previously unknown reservoir of iodine. This serpentinized forearc mantle reservoir may potentially contribute to the total crustal iodine budget and provide a mechanism for its recycling at convergent plate margins. Both clasts and mud show concurrent enrichments in boron and iodine, and the similarity in pore fluid profiles also suggests that these two incompatible, fluid-mobile elements behave similarly at convergent plate margins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report iodine and bromine concentrations in a total of 256 pore water samples collected from all nine sites of Ocean Drilling Program Leg 204, Hydrate Ridge. In a subset of these samples, we also determined iodine ages in the fluids using the cosmogenic isotope 129I (T1/2 = 15.7 Ma). The presence of this cosmogenic isotope, combined with the strong association of iodine with methane, allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly with depth from values close to that of seawater (0.0004 mM) to concentrations >0.5 mM. Several of the cores taken from the northwest flank of the southern summit show a pronounced maximum in iodine concentrations at depths between 100 and 150 meters below seafloor in the layer just above the bottom-simulating reflector. This maximum is especially visible at Site 1245, where concentrations reach values as high as 2.3 mM, but maxima are absent in the cores taken from the slope basin sites (Sites 1251 and 1252). Bromine concentrations follow similar trends, but enrichment factors for Br are only 4-8 times that of seawater (i.e., considerably lower than those for iodine). Iodine concentrations are sufficient to allow isotope determinations by accelerator mass spectrometry in individual pore water samples collected onboard (~5 mL). We report 129I/I ratios in a few samples from each core and a more complete profile for one flank site (Site 1245). All 129I/I ratios are below the marine input ratio (Ri = 1500x10**-15). The lowest values found at most sites are between 150 and 250x10**-15, which correspond to minimum ages between 40 and 55 Ma, respectively. These ages rule out derivation of most of the iodine (and, by association, of methane) from the sediments hosting the gas hydrates or from currently subducting sediments. The iodine maximum at Site 1245 is accompanied by an increase in 129I/I ratios, suggesting the presence of an additional source with an age younger than 10 Ma; there is indication that younger sources also contribute at other sites, but data coverage is not yet sufficient to allow a definitive identification of sources there. Likely sources for the older component are formations of early Eocene age close to the backstop in the overriding wedge, whereas the younger sources might be found in recent sediments underlying the current locations of the gas hydrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the Peruvian convergent margin, two distinct pore fluid regimes are recognized from differences in their Cl- concentrations. The slope pore fluids are characterized by low Cl- concentrations, but elevated Br- and I- concentrations due to biogenic production. The shelf pore fluids exhibit elevated Cl- and Br- concentrations due to diffusive mixing with an evaporitic brine. In the slope pore fluids, the Br-, I-, and NH4+ concentrations are elevated following bacterial decomposition of organic matter, but the I- concentrations are in excess of those expected based on mass balance calculations using NH4+ and Br- concentrations. The slope sediment organic matter, which is enriched in iodine from oxidationreduction processes at the oxygenated sediment-water interface, is responsible for this enrichment. The increases in dissolved I- and the I- enrichments relative to NH4+ and Br- correlate well with sedimentation rates because of differential trapping following regeneration. The pore-fluid I-/Br- ratios suggest that membrane ion fiitration is not a major cause of the decreases in Cl- concentrations. Other possible sources for low Cl- water, including meteoric water, clathrate dissociation, and/or mineral dehydration reactions, imply that the diluting component of the slope low-Cl- fluids has flowed at least 1 km through the sediment. The low bottom-water oxygenation in the shelf is responsible for the low (if any) enrichment of iodine in the shelf sediments. Fluctuations in bottom-water oxygen concentrations in the past, however, may be responsible for the observed variations in the sediment I/Br ratios. Comparison of Na+/Cl- and Br-/Cl- molar ratios in the pore fluids shows that the shelf high-Cl- fluid formed from mixing with a brine that formed from seawater concentrated by twelve to nineteen times and probably was modified by halite dissolution. This dense brine, located below the sediment sections drilled, appears to have flowed a distance >500 km through the sediment.