3 resultados para IODINE

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.

The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.

Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.

This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanocene metallacyclobutanes show a wide variety of reactivites with organic and inorganic reagents. Their reactions include methylene transfer to organic carbonyls, formation of enolates, electron transfer from activated alkyl chlorides, olefin metathesis, ring opening polymerization. Recently, preparations of heterobinuclear µ-methylene complexes were reported. In this thesis, mechanistic, synthetic, and structural studies of the heterobinuclear µ-methylene complexes will be described. Also, the reaction of titanocene methylidene trimethylphosphine complex with alkene sulfide and styrene sulfide will be presented.

Heterobinuclear µ-methylene-µ-methyl complexes C_(p2)Ti(µ-CH_2)( µ-CH_3)M(1,5-COD) have been prepared (M = Rh, Ir). X-ray crystallography showed that the methyl group of the complex was bonded to the rhodium and bridges to the titanium through an agostic bond. The ^(1)H,^(13)CNMR, IR spectra along with partial deuteration studies supported the structure in both solution and solid state. Activation of the agostic bond is demonstrated by the equilibration of the µ-CH_3 and µ-CH_2 groups. A nonlinear Arrhenius plot, an unusually large kinetic isotope effect (24(5)), and a large negative activation entropy (-64(3)eu) can be explained by the quantum-mechanical tunneling. Calculated rate constants with Bell-type barrier fitted well with the observed one. This equilibration was best explained by a 4e-4c mechanism (or σ bond metathesis) with the character of quantum-mechanical tunneling.

Heterobinuclear µ-methylene-µ-phenyl complexes were synthesized. Structural study of C_(p2)Ti(µ-CH_(2))(µ-p-Me_(2)NC_(6)H_(4))Rh(l,5-COD) showed that the two metal atoms are bridged by the methylene carbon and the ipso carbon of the p-N,N-dimethylarninophenyl group. The analogous structure of C_(p2))Ti(µ-CH_(2))(µ-o-MeOC_(6)H_(4))Rh(1,5-COD) has been verified by the differential NOE. The aromaticity of the phenyl group observed by ^(1)H NMR, was confirmed by the comparison of the C-C bond lengths in the crystallographic structure. The unusual downfield shifts of the ipso carbon in the ^(13)C NMR are assumed to be an indication of the interaction between the ipso carbon and electron-deficient titanium.

Titanium-platinum heterobinuclear µ-methylene complexes C_(p2)Ti(µ-CH_(2))(µ -X)Pt(Me)(PM_(2)Ph) have been prepared (X= Cl, Me). Structural studies indicate the following:(1) the Ti-CH2 bond possesses residual double bond character, (2) there is a dative Pt→Ti interaction which may be regarded as a π back donation from the platinum atom to the 'Ti=CH_(2)'' group, and (3) the µ-CH_3 group is bound to the titanium atom through a three-center, two-electron agostic bond.

Titanocene (η^(2)-thioformaldehyde)•PMe_3 was prepared from C_(p2)Ti=CH_(2)•PMe_3 and sulfur-containing organic compounds (e.g. alkene sulfide, triphenylphosphine sulfide) including elemental sulfur. Mechanistic studies utilizing trans-styrene sulfide-d_1 suggested the stepwise reaction to explain equimolar mixture of trans- and cis-styrene-d_1 as by-products. The product reacted with methyl iodide to produce cationic titanocene (η_(2)-thiomethoxymethyl) complex. Complexes having less coordinating anion like BF_4 or BPh_4 could be obtained through metathesis. Together with structural analyses, the further reactivities of the complexes have been explored.

The complex C_(p2)TiOCH_(2)CH(Ph)CH_2 was prepared from the compound C_(p2)Ti=CH_(2)-PMe_3 and styrene oxide. The product was characterized with ^(1)H-^(1)H correlated 2-dimensional NMR, selective decoupling of ^(1)H NMR, and differential NOE. Stereospecificity of deuterium in the product was lost when trans-styrene oxide-d_1 was allowed to react. Relative rates of the reaction were measured with varying substituents on the phenyl ring. Better linearity (r = -0.98, p^(+) = -0.79) was observed with σ_(p)^(+)than σ(r = -0.87, p = -1.26). The small magnitude of p^+ value and stereospecificity loss during the formation of product were best explained by the generation of biradicals, but partial generation of charge cannot be excluded. Carbonylation of the product followed by exposure to iodine yields the corresponding β-phenyl γ-lactone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.

Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.