146 resultados para T-cell Responses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Foxp3+ regulatory T (Treg) cells are essential for the maintenance of immune homeostasis and tolerance. During viral infections, Treg cells can limit the immunopathology resulting from excessive inflammation, yet potentially inhibit effective antiviral T cell responses and promote virus persistence. We report here that the fast-replicating LCMV strain Docile triggers a massive expansion of the Treg population that directly correlates with the size of the virus inoculum and its tendency to establish a chronic, persistent infection. This Treg cell proliferation was greatly enhanced in IL-21R-/- mice and depletion of Treg cells partially rescued defective CD8+ T cell cytokine responses and improved viral clearance in some but not all organs. Notably, IL-21 inhibited Treg cell expansion in a cell intrinsic manner. Moreover, experimental augmentation of Treg cells driven by injection of IL-2/anti-IL-2 immune complexes drastically impaired the functionality of the antiviral T cell response and impeded virus clearance. As a consequence, mice became highly susceptible to chronic infection following exposure to low virus doses. These findings reveal virus-driven Treg cell proliferation as potential evasion strategy that facilitates T cell exhaustion and virus persistence. Furthermore, they suggest that besides its primary function as a direct survival signal for antiviral CD8+ T cells during chronic infections, IL-21 may also indirectly promote CD8+ T cell poly-functionality by restricting the suppressive activity of infection-induced Treg cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The selenoenzyme glutathione peroxidase 4 (Gpx4) is a major scavenger of phospholipid hydroperoxides. Although Gpx4 represents a key component of the reactive oxygen species-scavenging network, its relevance in the immune system is yet to be defined. Here, we investigated the importance of Gpx4 for physiological T cell responses by using T cell-specific Gpx4-deficient mice. Our results revealed that, despite normal thymic T cell development, CD8(+) T cells from T(ΔGpx4/ΔGpx4) mice had an intrinsic defect in maintaining homeostatic balance in the periphery. Moreover, both antigen-specific CD8(+) and CD4(+) T cells lacking Gpx4 failed to expand and to protect from acute lymphocytic choriomeningitis virus and Leishmania major parasite infections, which were rescued with diet supplementation of high dosage of vitamin E. Notably, depletion of the Gpx4 gene in the memory phase of viral infection did not affect T cell recall responses upon secondary infection. Ex vivo, Gpx4-deficient T cells rapidly accumulated membrane lipid peroxides and concomitantly underwent cell death driven by ferroptosis but not necroptosis. These studies unveil an essential role of Gpx4 for T cell immunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regulatory T cells (T(reg)) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4(+)CD25(+) T(reg) were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3(+)CD25(-) T(reg). To obtain more insights in the specific function of T(reg) during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when T(reg) are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E2 (PGE2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE2 during T-cell receptor stimulation. In addition, we show that autocrine PGE2 signaling through EP receptors is essential for optimal CD4(+) T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4(+) Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sphingosine kinase 1 (SK1) is a key enzyme in the generation of sphingosine 1-phosphate (S1P) which critically regulates a variety of important cell responses such as proliferation and migration. Therefore, inhibition of SK-1 has been suggested to be an attractive approach to treat tumor growth and metastasis formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sphingosine kinases (SK) catalyse the formation of sphingosine 1-phosphate, which is a key lipid mediator regulating cell responses such as proliferation, survival and migration. Here we have investigated the effect of targeted inhibition of SK-1 on cell damage and elucidated the mechanisms involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated dermatitis of horses caused by bites of Culicoides spp. IBH does not occur in Iceland where Culicoides are absent. However, following importation into continental Europe where Culicoides are present, >or=50% of Icelandic horses (1st generation) develop IBH but responses, we investigated whether horses domiciled in Iceland are Th2-biased, and whether this is determined by helminth infection. We compared the parasite burden and T cell responses between Icelandic horses living in Iceland or Switzerland. Horses in Iceland have higher faecal egg counts, higher tapeworm-specific IgG(T) levels and higher total serum IgE levels than horses in Switzerland. Nevertheless, horses in Iceland displayed a low proportion of IL-4-producing cells in PBMC cultures after polyclonal or parasite extracts stimulation. No IL-4-producing cells were found in PBMC from horses after stimulation by Culicoides extract. Addition of anti-IL-10 and anti-TGF-beta1 to PBMC cultures of horses in Iceland increased the proportion of IL-4-producing cells after polyclonal or parasite antigens stimulation but not stimulation with Culicoides extract. This paralleled the high levels of IL-10 and TGF-beta1 found in supernatants from PBMC cultures of horses in Iceland. Collectively, horses living in Iceland have a high parasite burden but low IL-4 production. This supports the hypothesis that heavy helminth infections have a suppressive effect on IL-4 production mediated by IL-10 and TGF-beta1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antiretroviral therapy (ART) suppresses HIV viraemia, thereby reducing the antigenic drive for T cells to proliferate. Accordingly, selected HIV-specific T-cell responses have been described to contract within weeks of ART initiation. Here, we sought to investigate whether these findings apply to the entire repertoire of HIV-specific T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years sphingolipids have emerged as important signaling molecules regulating fundamental cell responses such as cell death and differentiation, proliferation and aspects of inflammation. Especially ceramide has been a main focus of research since it possesses pro-apoptotic capacity in many cell types. A counterplayer of ceramide was found in sphingosine-1-phosphate (S1P), which is generated from ceramide by the consecutive actions of ceramidase and sphingosine kinase. S1P can potently induce cell proliferation via binding to and activation of the Edg family of receptors which have now been renamed as S1P receptors. Obviously, a delicate balance between ceramide and sphingosine-1-phosphate determines whether cells undergo apoptosis or proliferate, two cell responses that are critically involved in tumor development. Directing the balance in favor of ceramide, i.e. by inhibiting ceramidase or sphingosine kinase activities may support the pro-apoptotic action of ceramide and thus may have beneficial effects in cancer therapy. This review will summarize novel insights into the regulation of sphingolipid formation and their potential involvement in tumor development. Finally, we will pinpoint potential new targets for tumor therapy.