15 resultados para Sequenciamento do exoma
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The microorganisms play very important roles in maintaining ecosystems, which explains the enormous interest in understanding the relationship between these organisms as well as between them and the environment. It is estimated that the total number of prokaryotic cells on Earth is between 4 and 6 x 1030, constituting an enormous biological and genetic pool to be explored. Although currently only 1% of all this wealth can be cultivated by standard laboratory techniques, metagenomic tools allow access to the genomic potential of environmental samples in a independent culture manner, and in combination with third generation sequencing technologies, the samples coverage become even greater. Soils, in particular, are the major reservoirs of this diversity, and many important environments around us, as the Brazilian biomes Caatinga and Atlantic Forest, are poorly studied. Thus, the genetic material from environmental soil samples of Caatinga and Atlantic Forest biomes were extracted by direct techniques, pyrosequenced, and the sequences generated were analyzed by bioinformatics programs (MEGAN MG-RAST and WEBCarma). Taxonomic comparative profiles of the samples showed that the phyla Proteobacteria, Actinobacteria, Acidobacteria and Planctomycetes were the most representative. In addition, fungi of the phylum Ascomycota were identified predominantly in the soil sample from the Atlantic Forest. Metabolic profiles showed that despite the existence of environmental differences, sequences from both samples were similarly placed in the various functional subsystems, indicating no specific habitat functions. This work, a pioneer in taxonomic and metabolic comparative analysis of soil samples from Brazilian biomes, contributes to the knowledge of these complex environmental systems, so far little explored
Resumo:
Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
The decoction of Brazilian pepper tree barks (Schinus terebinthifolius, Raddi), is used in medicine as wound healing and antiinflamatory. Once extracts from this plant are used for acceleration of scar s process, it is important to study their mutagenic and genotoxic potential. In previous works in our laboratory, it was observed mutagenicity caused by the decoction when in high concentrations. Among the chemical compounds of this plant that could be able to induce mutation, the flavonoids were the only group that was referred to have either an oxidant or antioxidant potential. The flavonoids were isolated, purified and quantified by adsorptive column chromatography under silica gel, bacterial and in vitro genotoxic tests were realized to determine if the flavonoids were the responsible agents for this mutagenicity found. The tests realized with plasmidial DNA were indicative that the flavonoids are probably genotoxic, due to the presence of correlation between increase of the flavonoid concentration and in plasmidial DNA double strand breakage visualized in agarose gel, as well as they were capable to generated abasic sites shown by the in vitro treatment with exonuclease III. The same tests with plasmidial DNA in the presence of copper [10 µM] and of a Tris-HCl pH 7.5 [10 µM] buffer were realized with the isolated flavonoids to determine if there would be or not participation of reactive oxygen species (ROS). The transformation of plasmidial DNA in different bacterial strains proficient and deficient in DNA repair enzymes in the presence or not of a Tris-HCl buffer, suggests that the enzymes that repair oxidative lesions are necessary to repair the lesions generated by the flavonoids and that ROS are generated and are necessary to promote the lesions. Bacterial tests with Escherichia coli strains of the CC collection (deficient or not for DNA repair enzymes), showed that the flavonoids are able to increase the frequency of mutations, mainly in strains mutated in repair enzymes (MutM, MutY-glicosylases and double mutant), suggesting that these agents are responsible for the enhancement in the mutation rate. In order to determine the mutation spectrum caused by the flavonoids of the Brazilian pepper tree stem bark, plasmidial DNA previously treated with the flavonoids were transformed in bacterial strains deficient and proficient in the DNA repair enzymes, followed by a blue-white selection with X-gal, DNA amplification by PCR and sequencing the positive mutant clones. Analysis of the mutants obtained from strains CC104, CC104mutM, CC104mutY, CC104mutMmutY, BW9101, BW9109 indicated a predominance of some mutations like G:C to C:G that can be correlated with the origin of 8-oxoG, due to oxidative lesions caused by the flavonoids. So it can concluded that the flavonoid isolated or in fractions enriched on them are genotoxic and mutagenic, and their mutations are predominantly oxidative, mediated by ROS, and the lesions are recognized by the BER system. In this way it is proposed that the flavonoids can act in two different ways to generate the DNA lesion: 1. in a Fenton-like reaction, when the flavonoid are in the presence of metal ions and that together with the water generate ROS that promotes the DNA lesions; 2. in another way the lesions can be generated by the formation of ROS due to the internal chemical structure of the flavonoid molecule due to the quantity and location of hydroxyl groups, and so producing the DNA lesions, those lesions can be directly (suggested by the in vitro experiments) or indirectly done (supported by the experiments using the CC bacterial strains)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
This dissertation analyses the influence of sugar-phosphate structure in the electronic transport in the double stretch DNA molecule, with the sequence of the base pairs modeled by two types of quasi-periodic sequences: Rudin-Shapiro and Fibonacci. For the sequences, the density of state was calculated and it was compared with the density of state of a piece of human DNA Ch22. After, the electronic transmittance was investigated. In both situations, the Hamiltonians are different. On the analysis of density of state, it was employed the Dyson equation. On the transmittance, the time independent Schrödinger equation was used. In both cases, the tight-binding model was applied. The density of states obtained through Rudin-Shapiro sequence reveal to be similar to the density of state for the Ch22. And for transmittance only until the fifth generation of the Fibonacci sequence was acquired. We have considered long range correlations in both transport mechanism
Resumo:
Dengue is considered as the most important arthropod-borne viral disease throughout the world due to the high number of people at risk to be infected, mainly in tropical and subtropical regions of the planet. The etiologic agent is Dengue Virus (DENV), it is a single positive-stranded RNA virus of the family Flavivirus, genus Flaviviridae. Four serotypes are known, DENV-1, DENV-2, DENV-3 and DENV-4. One of the most important characteristic of these viruses is the genetic variability, which demands phylogenetic and evolutionary studies to understand key aspects like: epidemiology, virulence, migration patterns and antigenic characteristics. The objective of this study is the genetic characterization of dengue viruses circulating in the state of Rio Grande does Norte from January 2010 to December 2012. The complete E gene (1485 pb) of DENV1, 2 e 4 from Brazilian (Rio Grande do Norte) patients was sequenced. Phylogenetic analysis was performed using MEGA 5.2 software, Tamura-Nei model and Neighbor-Joining trees were inferred for the datasets. In Brazil, there is just one DENV-1 genotype (genotype V), one DENV-2 genotype (Asian/American) and two DENV-4 genotypes (genotypes I and II). Brazilian strains of DENV-1 are subdivided in two different lineages (BR-I and BR-II), the Brazilian strains of DENV-2 are subdivided in four lineages (BRI-IV) and genotype II of DENV-4 is subdivided in three Brazilian lineages (BRI-III). The viruses isolated in RN belong to lineage BR-II (DENV-1), BR-IV (DENV-2) and BR-III (DENV-4).The Caribbean and near Latin American countries are the main source of these viruses to Brazil. Amino acids substitutions were detected in three domains of E protein, this makes clear the necessity of studies that associate epidemiological and molecular data to better understand the effects of these mutations. This is the first study about genetic characterization and evolution of Dengue viruses in Rio Grande do Norte, Brazil
Resumo:
Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.
Resumo:
Leishmania infantum is the main etiologic agent of visceral leishmaniasis in the New World. The pattern of distribution of leishmaniasis has changed substantially and has presented an emerging profile within the periphery of the Large Urban Centers. Leishmania infection can compromise skin, mucosa and viscera. Only 10% of the individuals infected develop the disease and 90% of human infection is asymptomatic. The main factors involved in the development of the disease are the host immune response, the vector’s species and the parasite’s genetic content. The sequencing of Leishmania isolated seeks to increase the understanding of the symptoms of individuals. The aim of this study was to evaluate the genetic diversity of circulating Leishmania strains among humans, and symptomatic and asymptomatic, and dogs from endemic areas of Rio Grande do Norte State and analyze sandflies from endemic areas for cutaneous and visceral disease. The genetic variability was evaluated by the use of markers hsp70 , ITS1 and a whole genome sequencing was also carried out. The amplified hsp70 and ITS1 of samples were analyzed and assembled using a Phred / Phrap package. The dendograms were constructed using the same methodology, but adding 500 bootstraps, followed by inferences on the relationships between Leishmania variants. The sequences of the 20 Brazilian isolates were mapped to the reference genome L. infantum JPCM5, using the Bowtie2 program and the identification of 36 contigs. The information of the valid SNPs were used in the PCA. SNPs were visualized by Geneious 7.1 and IGV. The genome annotations were transferred to their respective chromosomes and displayed on Geneious. The matching sequences of all chromosomes were aligned using Mauve. The phylogenetic trees were calculated according to maximum likelihood and JTT models. Sandflies were analyzed by PCR for the identification of Leishmania infection, a blood meal source and GAPDH sand fly. As a result, hsp70 and ITS1 were not capable of identifying genetic variability among human isolates from symptomatic and asymptomatic, and dogs. The complete sequencing of the 20 Brazilian isolates revealed a strong similarity between the circulating Leishmania strains in Rio Grande do Norte. The isolates collected in the city of Natal from humans and canines remained grouped in all analyzes, suggesting that there is genotypic and geographic proximity among the isolates. The isolated samples in the 1990s had a higher genotypic diversity when compared to freshly isolated samples. All isolates presented 36 chromosomes with variable ploidy among them, no correlation was found between the number of amastina genes copies, gp63, A2 and SSG with such clinic forms. In general, we did not find correlation between symptomatic and asymptomatic clinical forms and the gene content of the Brazilian isolates of Leishmania. 34,28% of the sandflies collected in the upper west region were L. longipalpis and the main sources of blood meal were humans, dogs and chickens.
Resumo:
The microorganisms play very important roles in maintaining ecosystems, which explains the enormous interest in understanding the relationship between these organisms as well as between them and the environment. It is estimated that the total number of prokaryotic cells on Earth is between 4 and 6 x 1030, constituting an enormous biological and genetic pool to be explored. Although currently only 1% of all this wealth can be cultivated by standard laboratory techniques, metagenomic tools allow access to the genomic potential of environmental samples in a independent culture manner, and in combination with third generation sequencing technologies, the samples coverage become even greater. Soils, in particular, are the major reservoirs of this diversity, and many important environments around us, as the Brazilian biomes Caatinga and Atlantic Forest, are poorly studied. Thus, the genetic material from environmental soil samples of Caatinga and Atlantic Forest biomes were extracted by direct techniques, pyrosequenced, and the sequences generated were analyzed by bioinformatics programs (MEGAN MG-RAST and WEBCarma). Taxonomic comparative profiles of the samples showed that the phyla Proteobacteria, Actinobacteria, Acidobacteria and Planctomycetes were the most representative. In addition, fungi of the phylum Ascomycota were identified predominantly in the soil sample from the Atlantic Forest. Metabolic profiles showed that despite the existence of environmental differences, sequences from both samples were similarly placed in the various functional subsystems, indicating no specific habitat functions. This work, a pioneer in taxonomic and metabolic comparative analysis of soil samples from Brazilian biomes, contributes to the knowledge of these complex environmental systems, so far little explored
Resumo:
Flowering is a fundamental process in the life cycle for plant. This process is marked by vegetative to reproductive apical meristem conversion, due to interactions between several factors, both internal and external to plant. Therefore, eight subtractive libraries were constructed using apical meristem induced or not induced for two contrasting species: Solanum lycopersicum cv. Micro-Tom and Solanum pimpinellifolium. Several cDNAs were identified and among these, were selected two cDNAs: one homologous cDNA to cyclophilin (LeCYP1) and the other to Auxin repressed protein (ARP). It has observed that LeCYP1 and ARP genes are important in the developmental process to plants. In silico analysis, were used several databases with the exclusion criterion E-value <1.0x10-15. As a result, conservation was observed for proteins analyzed by means of multiple alignments and the presence of functional domains. Then, overexpression cassettes were constructed for the ARP cDNA in sense and antisense orientations. For this step, it was used the CaMV35S promoter. The cDNA orientation (sense or antisense) in relation to the promoter was determined by restriction enzymes and sequencing. Then, this cassette was transferred to binary vector pZP211 and these cassettes were transferred into Agrobacterium tumefaciens LBA4404. S. lycopersicum cv. Micro-Tom (MT) and MT-Rg1 plants were transformed. In addition, seedlings were subjected to hormone treatments using a synthetic auxin (- naphthalene acetic acid) and cyclosporin A (cyclophilin inhibitor) treatments and it was found that the hormone treatment there were changes in development of lateral roots pattern, probably related to decreases in auxin signaling caused by reduction of LeCYP1 in MT-dgt plants while cyclosporin A treatments, there was a slight delay in flowering in cv. MT plants. Furthermore, assay with real-time PCR (RT-qPCR) were done for expression level analysis from LeCYP1 and ARP in order to functionally characterize these sequences in tomato plants.
Resumo:
Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior