40 resultados para Expressão de vias e genes em GVHD

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies report that the pathophysiological mechanism of diabetes complications is associated with increased production of Reactive Oxygen Species (ROS)-induced by hyperglycemia and changes in the capacity the antioxidant defense system. In this sense, the aim of this study was to evaluate changes in the capacity of antioxidant defense system, by evaluating antioxidant status, gene expression and polymorphisms in the genes of GPx1, SOD1 and SOD2 in children, adolescents and young adults with type 1 diabetes. We studied 101 individuals with type 1 diabetes (T1D) and 106 normoglycemic individuals (NG) aged between 6 and 20 years. Individuals with type 1 diabetes were evaluated as a whole group and subdivided according to glycemic control in DM1G good glycemic control and DM1P poor glycemic control. Glycemic and metabolic control was evaluate by serum glucose, glycated hemoglobin, triglycerides, total cholesterol and fractions (HDL and LDL). Renal function was assessed by measurement of serum urea and creatinine and albumin-to-creatinine ratio (ACR) in spot urine. Antioxidant status was evaluate by content of reduced glutathione (GSH) in whole blood and the activity of erythrocyte enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD). We also analyzed gene expression and gene polymorphisms of GPx1 (rs1050450), SOD1 (rs17881135) and SOD2 (rs4880) by the technique of real-time PCR (Taqman®). Most individuals with DM1 (70.3%) had poor glycemic control (glycated hemoglobin> 8%). Regarding the lipid profile, individuals with type 1 diabetes had significantly elevated total cholesterol (p <0.001) and LDL (p <0.000) compared to NG; for triglycerides only DM1NC group showed significant increase compared to NG. There was an increase in serum urea and RAC of individuals with DM1 compared to NG. Nine individuals with type 1 diabetes showed microalbuminuria (ACR> 30 mg / mg). There was a decrease in GSH content (p = 0.006) and increased erythrocyte GPx activity (p <0.001) and SOD (p <0.001) in DM1 group compared to NG. There was no significant difference in the expression of GPx1 (p = 0.305), SOD1 (.365) and SOD2 (0.385) between NG and DM1. The allele and genotype frequencies of the polymorphisms studied showed no statistically significant difference between the groups DM1 and NG. However, the GPx1 polymorphism showed the influence of erythrocyte enzyme activity. There was a decrease in GPx activity in individuals with type 1 diabetes who had a polymorphic variant T (p = 0.012). DM1 patients with the polymorphic variant G (AG + GG) for polymorphism of SOD2 (rs4880) showed an increase in the RAC (p <0.05). The combined data suggest that glucose control seems to be the predominant factor for the emergence of changes in lipid profile, renal function and antioxidant system, but the presence of the polymorphisms studied may partly contribute to the onset of complications

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plants are organisms sessile and because of this they are susceptible to genotoxic effects due to environmental exposure such as light [including ultraviolet (UV)], heat, drought and chemicals agents. Therefore, there are differents pathways in order to detect a lesion and correct. These pathways are not well known in plants. The MutM/Fpg protein is a DNA glycosylase that is responsible for detect and correct oxidative lesions. In the sugarcane genome, it was found two possible cDNAs that had homology to this protein: scMUTM1 and scMUTM2. The aim of this work was to characterize the role of these cDNAs in plants. In order to do this, the expression level after oxidative stress was evaluated by semiquantitative RT-PCR. Another point analyzed in order to obtain the full-length gene, it was to use a sugarcane genomic library that was hybridized with both cDNAs as a probe. It was found two clones that will bought and sequenced. The promoter region was also cloned. It was obtained sequences only for scMUTM2 promoter region. The sequences obtained were divided into six groups. It was found regulatory motifs such as TATA-box, CAAT-box, oxidative stress element response and regulatory regions that response to light. The other point analyzed was to characterize the N-terminal region by PCR constructs. These constructs have deletions at 5 region. These sequences were introduce into Escherichia coli wild type strain (CC104) and double mutant (CC104mutMmutY). The results showed that proteins with deletions of scMUTM1 N-terminal region were able to complement the Fpg and MutY-glycosylase deficiency in CC104 mutMmutY reducing the spontaneous mutation frequency

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immediate-early genes (IEGs) expression has been widely used as a valuable tool to investigate brain areas activated by specific stimuli. Studies of natural vocalizations, specially in songbirds, have largely benefited from this tool. Here we used IEGs expression to investigate brain areas activated by the hearing of conspecific common marmoset (Callithrix jacchus) vocalizations and/or utterance of antiphonal vocalizations. Nine adult male common marmosets were housed in sound-attenuating cages. Six animals were stimulated with playbacks of freely recorded natural long distance vocalizations (phee calls and twitters; 45 min. total duration). Three of them vocalized in response (O/V group) and three did not (O/n group). The control group (C) was composed by the remaining animals, which neither heard the playbacks nor spontaneously vocalized. After one hour of the stimulation onset (or no stimulation, in the case of the C group), animals were perfused with 0,9% phosphate-saline buffer and 4% paraformaldehyde. The tissue was coronally sectioned at 20 micro meter in a cryostat and submitted to immunohistochemistry for the IEGs egr-1 and c-fos. Marked immunoreactivity was observed in the auditory cortex of O/V and O/n subjects and in the anterior cingulate cortex, the dorsomedial prefrontal cortex and the ventrolateral prefrontal cortex of O/V subjects. In this study, brain areas activated by vocalizations of common marmosets were investigated using IEGs expression for the first time. Our results with the egr-1 gene indicate that potential plastic phenomena occur in areas related to hearing and uttering conspecific vocalizations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The β-proteobacterium Chromobacterium violaceum is a Gram-negative, free-living, saprophytic and opportunistic pathogen that inhabits tropical and subtropical ecosystems among them, in soil and water of the Amazon. It has great biotechnological potential, and because of this potential, its genome was completely sequenced in 2003. Genome analysis showed that this bacterium has several genes with functions related to the ability to survive under different kinds of environmental stresses. In order to understand the physiological response of C. violaceum under oxidative stress, we applied the tool of shotgun proteomics. Thus, colonies of C. violaceum ATCC 12472 were grown in the presence and absence of 8 mM H2O2 for two hours, total proteins were extracted from bacteria, subjected to SDS-PAGE, stained and hydrolysed. The tryptic peptides generated were subjected to a linear-liquid chromatography (LC) followed by mass spectrometer (LTQ-XL-Orbitrap) to obtain quantitative and qualitative data. A shotgun proteomics allows to compare directly in complex samples, differential expression of proteins and found that in C. Violaceum, 131 proteins are expressed exclusively in the control condition, 177 proteins began to be expressed under oxidative stress and 1175 proteins have expression in both conditions. The results showed that, under the condition of oxidative stress, this bacterium changes its metabolism by increasing the expression of proteins capable of combating oxidative stress and decreasing the expression of proteins related processes bacterial growth and catabolism (transcription, translation, carbon metabolism and fatty acids). A tool with of proteomics as an approach of integrative biology provided an overview of the metabolic pathways involved in the response of C. violaceum to oxidative stress, as well as significantly amplified understanding physiological response to environmental stress. Biochemical and "in silico" assays with the hypothetical ORF CV_0868 found that this is part of an operon. Phylogenetic analysis of superoxide dismutase, protein belonging to the operon also showed that the gene is duplicated in genome of C. violaceum and the second copy was acquired through a horizontal transfer event. Possibly, not only the SOD gene but also all genes comprising this operon were obtained in the same manner. It was concluded that C. violaceum has complex, efficient and versatile mechanisms in oxidative stress response

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro and in animal models, APE1, OGG1, and PARP-1 have been proposed as being involved with inflammatory response. In this work, we have investigated if the SNPs APE1 Asn148Glu, OGG1 Ser326Cys, and PARP-1 Val762Ala are associated to meningitis and also developed a system to enable the functional analysis of polymorphic proteins. Patients with bacterial meningitis (BM), aseptic meningitis (AM) and controls (non-infected) genotypes were investigated by PIRA-PCR or PCR-RFLP. DNA damages were detected in genomic DNA by Fpg treatment. IgG and IgA were measured from plasma and the cytokines and chemokines were measured from cerebrospinal fluid samples using Bio-Plex assays. The levels of NF-κB and c-Jun were measured in CSF by dot blot assays. A significant (P<0.05) increase in the frequency of APE1 148Glu allele in BM and AM patients was observed. A significant increase in the genotypes Asn/Asn in control group and Asn/Glu in BM group was also found. For the SNP OGG1 Ser326Cys, the genotype Cys/Cys was more frequent (P<0.05) in BM group. The frequency of PARP-1 Val/Val genotype was higher in control group (P<0.05). The occurrence of combined SNPs increased significantly in BM patients, indicating that these SNPs may be associated to the disease. Increasing in sensitive sites to Fpg was observed in carriers of APE1 148Glu allele or OGG1 326Cys allele, suggesting that SNPs affect DNA repair activity. Alterations in IgG production were observed in the presence of SNPs APE1Asn148Glu, OGG1Ser326Cys or PARP-1Val762Ala. Reductions in the levels ofIL-6, IL-1Ra, MCP-1/CCL2and IL-8/CXCL8 were observed in the presence of APE1148Glu allele in BM patients, however no differences were observed in the levels of NF-κB and c-Jun considering genotypes and analyzed groups. Using APE1 as model, a system to enable the analysis of cellular effects and functional characterization of polymorphic proteins was developed using strategies of cloning APE1 cDNA in pIRES2-EGFP vector, cellular transfection of the construction obtained, siRNA for endogenous APE1 and cellular cultures genotyping. In conclusion, we obtained evidences of an effect of SNPs in DNA repair genes on the regulation of immune response. This is a pioneering work in the field that shows association of BER variant enzymes with an infectious disease in human patients, suggesting that the SNPs analyzed may affect immune response and damage by oxidative stress level during brain infection. Considering these data, new approaches of functional characterization must be developed to better analysis and interactions of polymorphic proteins in response to this context

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riboflavin is a vitamin very important in aerobic organisms, as a precursor of many coenzymes involved in the electron transporter chain. However, after photosensitization of riboflavin with UV or visible light, it generates reactive oxygen species (ROS), which can oxidize the DNA. The repair of oxidative lesions on DNA occurs through the base excision repair pathway (BER), where APE1 endonuclease plays a central role. On the other hand, the nucleotide excision repair pathway (NER) repairs helix-distorting lesions. Recently, it was described the participation of NERproteins in the repair of oxidative damage and in stimulation of repair function fromAPE1. The aim of this research was to evaluate the cytotoxic effects of photosensitized riboflavin (RF*) in cells proficient and deficient in NER, correlating with APE1 expression. For this propose, the cells were treated with RF* and it was performed the cell viability assay, extraction of whole proteins, cells fractionation, immunoblotting, indirect immunofluorescence and analysis of polymorphisms of BER gens. The results evidenced that cells deficient in XPA and CSB proteins were more sensitive to RF*. However, XPC-deficient cells presented similar resistance to MRC5- SV cells, which is proficient in NER. These results indicate that XPA and CSB proteins have an important role on repair of oxidative lesions induced by RF*. Additionally, it was evidenced that single nucleotide polymorphisms (SNPs) in BER enzymes may influence in sensitivity of NER-deficient cell lines. Concerning the APE1 expression, the results showed that expression of this protein after treatment with RF* only changed in XPC-deficient cells. Though, it was observed that APE1 is recruited and is bound to chromatin in MRC5-SV and XPA cells after treatment with RF*. The results also showed the induction of DNA damage after treatment with RF*, through the analysis of-H2AX, since the treatment promoted an increase of endogenous levels of this phosphorylated protein, which acts signaling double strand-break on DNA. On the other hand, in XPC-deficient cells, regardless of resistance of RF*, the endogenous levels of APE1 are extremely reduced when compared with other cell lines and APE1 is not bound to chromatin after treatment with RF*. These results conclude that RF* was able to induce cell death in NERdeficient cells, where XPA and CSB cells were more sensitive when compared with MRC5-SV and XPC-deficient cells. This last result is potentially very interesting, since XPC-deficient cell line presents low levels of APE1. Additionally, the results evidenced that APE1 protein can be involved in the repair of oxidative damage induced by RF*, because APE1 is recruited and bound strongly to chromatin after treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial activities, oil spills and its derivatives, as well as the incomplete combustion of fossil fuels have caused a great accumulation of hydrocarbons in the environment. The number of microorganisms on the planet is estimated at 1030 and prokaryotes the most abundant. They colonized diverse environments for thousands of years, including those considered extreme and represent an untapped source of metabolic and genetic diversity with a large biotechnological potential. It is also known that certain microorganisms have the enzymatic capacity to degrade petroleum hydrocarbons and, in many ecosystems, there is an indigenous community capable of performing this function. The metagenomic has revolutionized the microbiology allowing access uncultured microbial communities, being a powerful tool for elucidation of their ecological functions and metabolic profiles, as well as for identification of new biomolecules. Thus, this study applied metagenomic approaches not only for functional selection of genes involved in biodegradation and emulsification processes of the petroleum-derived hydrocarbons, but also to describe the taxonomic and metabolic composition of two metagenomes from aquatic microbiome. We analyzed 123.116 (365 ± 118 bp) and 127.563 sequences (352 ± 120 bp) of marine and estuarine metagenomes, respectively. Eight clones were found, four involved in the petroleum biodegradation and four were able to emulsify kerosene indicating their abilities in biosurfactants synthesis. Therefore, the metagenomic analyses performed were efficient not only in the search of bioproducts of biotechnological interest and in the analysis of the functional and taxonomic profile of the metagenomes studied as well

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The congenital facial clefts are characterized by incomplete formation of the structures that separate the oral and nasal cavity. It is known that several environmental and genetic factors are involved in its development, among these, polymorphisms associated with folic acid metabolism have been investigated. In this sense, the objective was to observe the frequency of polymorphisms C677T and A1298C methylenetetrahydrofolate reductase gene (MTHFR), methionine synthase A2756G of (MTR), A66G of methionine synthase reductase (MTRR) A80G and the reduced folate carrier (RFC1) in patients with non-syndromic oral clefts, trying to match them with their development. Methods: We studied 140 patients with non-syndromic oral clefts and their mothers and 175 control subjects with their mothers, who underwent a questionnaire to obtain family information. Were collecting blood for DNA extraction from patients and their mothers to identify the genotypes of both by PCRRFLP, in addition to carrying out the determination of glucose, AST, ALT and serum creatinine, folic acid and vitamin B12 Serum and plasma homocysteine, and the hemogram. Results: Most patients have cleft lip and palate (55.8%), followed by isolated cleft palate (24.2%) and cleft lip (20%). Regarding gender, 62% of patients were male and 48% female and, after subdivision of the type of screwdriver according to sex was found a prevalence of males in the cracks of the type lip and palate (69 %) and lip (69.2%) and in the case of cleft palate was a female predominance (59%). The average concentration of serum folate in the group of mothers of cleft patients was significantly lower (13.8 ± 2.4 ng / mL) compared with the group of mothers of control subjects (18.8 ± 3.4 ng / mL) This was also observed for the group of cleft children as compared to controls, the dosage of folic acid had a significant difference with values of 15.6 ± 0.6 (ng / mL) and 17.9 ± 0.6 (ng / mL), respectively. For the biochemical measurements of glucose, AST, ALT and creatinine were not statistically different, nor was observed for haematological parameters performed. In assessing the frequency of polymorphisms C677T and A1298C MTHFR, A2756G MTR, MTRR A66G and A80G of the RFC1 there was no statistically significant difference in genotype distribution between cases and controls both for mothers and in the cleft. Conclusion: Although not observed association of polymorphisms with the development of cracks, the decrease in serum folate in the group of cleft patients and their mothers may reflect a disturbance in the metabolism of this metabolite, necessitating further studies such as studies methylation and expression to further elucidate the involvement of folate in the development of oral clefts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flowering is a process marked by switch of shoot apical meristem to floral meristem, and it involves a complex regulation by endogenous and environmental factors. Analyses of key flowering genes have been carried out primarily in Arabidopsis thaliana and have provided a foundation for understanding the underlying molecular genetic mechanisms controlling different aspects of floral development. Several homologous have been found in other species, but for crops species such as tomatoes this process is not well known. The aim of this work was to use the genetic natural variation associated to the flowering process and use molecular tools such as subtractive libraries and real time PCR in order to identify and analyze the expression from genes that may be associated to flowering in these two species: L. esculentum cv Micro-Tom and L. pimpinellifolium. Our results showed there were identified many genes related to vegetative and possibly to the flowering process. There were also identified many sequences that were unknown. We ve chosen three genes to analyze the expression by real time PCR. The histone H2A gene gave an expression higher in L. pimpinellifolium, due to this the expression of this gene may be associated to flowering in this specie. It was also analyzed the expression of an unknown gene that might be a key factor of the transition to flowering, also in L. pimpinellifolium. For the elongation factor 1-α expression, the expression results were not informative, so this gene may have a constitutive expression in vegetative and flowering state. The results observed allowed us to identify possible genes that may be related to the flowering process. For further results it will be necessary a better characterization of them.