18 resultados para hydroxyapatite

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple sol–gel method was developed for hydroxyapatite/titania (HA/TiO2) coatings on non-toxic titanium–zirconium (TiZr) alloy for biomedical applications. The HA/TiO2-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO2 layers were spin-coated on the surface of TiZr alloy at a speed of 3000 rpm for 15 s, followed by a heat treatment at 600 °C for 20 min in an argon atmosphere sequentially. The TiO2 layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO2 and HA layers were 25 μm thick, and the total thickness of the HA/TiO2 coatings was 50 μm. The TiZr alloy after the above HA/TiO2 coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple sol–gel method was successfully developed for a hydroxyapatite (HA)/TiO2 double layer deposition on a pure titanium substrate. Phase formation, surface morphology, and interfacial microstructure were investigated by differential scanning calorimetry analysis (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TiO2 layer was coated by a spin coating method at a speed of 1500 rpm for 15 s, followed by a heat treatment at 560 °C for 20 min. The HA film was subsequently spin coated on the outer surface at the same speed and then heat-treated at difference temperatures. Results indicated that the HA phase began to crystallize after a heat treatment at 580 °C; and the crystallinity increased obviously at a temperature of 780 °C. The HA film showed a porous structure and a thickness of 5–7 μm after the heat treatment at 780 °C. SEM observations revealed no delamination and crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA film with a porous structure is expected to be more susceptible to the natural remodeling processes when it is implanted in a living body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HA) was coated on the surface of a titanium-niobium (Ti-Nb) alloy by a sol-gel process. Triethyl phosphite and calcium nitrate were used as the phosphorus (P) and calcium (Ca) precursors respectively to prepare a Ca/P sol solution. The Ti-Nb alloy was dip-coated in the sol and heated at 600°C for 30 minutes. X-ray diffraction (XRD) analysis indicated the major phase constituent of the coating after heat treatment was HA. Scanning electron microscopy (SEM) observation showed that a few cracks were distributed on the HA coating. The in-vitro bioactivity of the HA coated Ti-Nb alloy was assessed using a cell culture of SaOS-2 osteoblast-like cells. The density of cell attachment was determined by MTT assay; the cell morphology was observed by SEM. Results indicated that the density of cell attachment on the surface of the Ti-Nb alloy was significantly increased by HA coating. Cell morphology observation showed that cells attached, spread and grew well on the HA coated surface. It can be concluded that the HA coating improved the in-vitro bioactivity of Ti-Nb alloy effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite/titania (HA/TiO2) double layers were coated onto Ti scaffolds throughout for orthopaedic applications by sol-gel method. Differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffractometry (XRD) were used for the characterisation of the phase transformations of the dried gels and coated surface structures. Scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) was used for the observation and evaluation of the morphology and phases of the surface layers and for the assessment of the in vitro tests. The in vitro assessments were performed by soaking the HA/TiO2 double coated samples into the simulated body fluid (SBF) for various periods. The TiO2 layer was coated by a dipping-coating method at a speed of 12 cm/min, followed by a heat treatment at 600 °C for 20 min. The HA layer was subsequently dipping-coated on the outer surface at the same speed and then heat-treated at difference temperatures. The results indicat that the HA phase begins to crystallize after a heat treatment at 560 °C. The crystallinity increases obviously at 760 °C. SEM observations find no delamination or crack at the interfaces of HA/TiO2 and TiO2/Ti. The HA/TiO2 coated Ti scaffolds displays excellent bone-like apatite forming ability when it is soaked into SBF. Ti scaffolds after HA/TiO2 double coatings can be anticipated as promising implant materials for orthopaedic applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (2-D SDS-PAGE) of 32P-labeled cytosolic and membrane extracts, we identified a 21.5 kDa phosphoprotein with an isoelectric point of 6.0 in NFS-60 cells that was phosphorylated maximally at 15 min by treatment with granulocyte-colony stimulating factor (G-CSF) but not with interlevkin-3 (IL-3) or colony-stimulating factor-1 (macrophage-colony stimulating factor (CSF-1 (M-CSF)). The phosphorylation of this protein, designated 21.5/6.0, was unaffected by a series of antiproliferative agents [32]. These findings suggested that the 21.5/6.0 phosphoprotein may be involved in specific G-CSF-mediated biological responses such as activation and/or differentiation. We sought to characterize this 21.5/6.0 by a novel combination of 2-D SDS-PAGE and hydroxyapatite (HTP)-chromatography. Amino acid sequence determination of 21.5/6.0 revealed it to share a high level of homology with copper/zinc superoxide dismutase (Cu/Zn-SOD), indicating that a Cu/Zn-SOD is phosphorylated following treatment with G-CSF. This is the first report of the phosphorylation and possible involvement of Cu/Zn-SOD protein in granulocyte activation/differentiation events. In addition, Cu/Zn-SOD levels and activity were diminished by G-CSF but not IL-3 treatment. This new protocol combining 2-D SDS-PAGE and HTP-chromatography allows the characterization of low abundance phosphoproteins involved in the cellular responses to G-CSF and presumably to other cytokines/growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area.

Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model.

Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 × 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis.

Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months – Ti (p = 0.000) and HA (p = 0.009) – and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter's sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect's marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites.

Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, titanium (Ti) samples were surface-modified by titania (TiO2), silica (SiO2) and hydroxyapatite (HA) coatings using a sol-gel process. The bioactivity of the film-coated Ti samples was investigated by cell attachment and morphology study using human osteoblast-like SaOS-2 cells. Results of the cell attachment indicated that the densities of cell attachment on the surfaces of Ti samples were significantly increased by film coatings; the density of cell attachment on HA film-coated surface was higher than those on TiO2 and SiO2 film-coated surfaces. Cell morphology study showed that the cells attached, spread and grew well on the three kinds of film-coated surfaces. It can be concluded that the three kinds of film coatings can bioactivate the surfaces of Ti samples effectively. Overall, Ti sample with HA film-coated surface exhibited the best bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous Ti-50.5Ni shape memory alloys with different porosities were produced using a space-holder sintering method. A new Ni-free Ti-based shape memory alloy, Ti-18Nb-5Mo-5Sn, was developed for potential biomedical applications, and a novel one-step hydrothermal process was applied to produce hydroxyapatite coatings on the surface of Ti alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydroxyapatite (HAp) is commonly used to coat titanium alloys (Ti–6Al–4V) for orthopedic implants. However, their poor adhesion strength and insufficient long-term stability limit their application. Novel sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study is to use the novel sphene ceramics as coatings for Ti–6Al–4V. The sol–gel method was used to produce the coatings and the thermal properties, phase composition, microstructure, thickness, surface roughness and adhesion strength of sphene coatings were analyzed by differential thermal analysis–thermal gravity (DTA–TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM) and scratch test, respectively. DTA analysis confirmed that the temperature of the sphene phase formation is 875 °C and XRD analysis indicated pure sphene coatings were obtained. A uniform structure of the sphene coating was found across the Ti–6Al–4V surface, with a thickness and surface roughness of the coating of about 0.5–1 μm and 0.38 μm, respectively. Sphene-coated Ti–6Al–4V possessed a significantly improved adhesion strength compared to that for HAp coating and their chemical stability was evaluated by testing the profile element distribution and the dissolution kinetics of calcium (Ca) ions after soaking the sphene-coated Ti–6Al–4V in Tris–HCl solution. Sphene coatings had a significantly improved chemical stability compared to the HAp coatings. A layer of apatite formed on the sphene-coated Ti–6Al–4V after they were soaked in simulated body fluids (SBF). Our results indicate that sol–gel coating of novel sphene onto Ti–6Al–4V possessed improved adhesion strength and chemical stability, compared to HAp-coated Ti–6Al–4V prepared under the same conditions, suggesting their potential application as coatings for orthopedic implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the association between undercarboxylated osteocalcin (ucOC) and lower-limb muscle strength in women over the age of 70years. The study also aims to confirm the association between bone turnover markers and heel ultrasound measures. A post-hoc analysis using data collected as part of a randomized placebo-controlled trial of vitamin D supplementation. An immunoassay was used to quantify total OC (tOC), with hydroxyapatite pre-treatment for ucOC. We determined associations of absolute and relative (ucOC/tOC; ucOC%) measures of ucOC with lower-limb muscle strength, heel ultrasound measures of speed of sound (SOS) and broadband ultrasound attenuation (BUA), bone turnover markers (BTMs; P1NP and CTx) and the acute phase protein alpha-1-antichymotrypsin (α-ACT). ucOC%, but not absolute ucOC concentration, was positively associated with hip flexor, hip abductor and quadriceps muscle strength (all p<0.05). ucOC% was negatively associated with α-ACT (β-coefficient=-0.24, p=0.02). tOC was positively associated with both P1NP and CTx (p<0.001). For each per unit increase in tOC (μg/L) there was a corresponding lower BUA, SOS and SI (β-coefficient = -0.28; -0.23 and -0.23, respectively; all p<0.04). In conclusion, ucOC% is positively associated with muscle strength and negatively associated with α-ACT. These data support a role for ucOC in musculoskeletal interactions in humans. Whilst tOC is associated with bone health, ucOC% and ucOC may also be linked to falls and fracture risk by influencing muscle function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.