52 resultados para grass pollen

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Asthma incidence has long been linked to pollen, even though pollen grains are too large to penetrate into the airways where asthmatic responses originate. Pollen allergens found in small, respirable particles have been implicated in a number of asthma epidemics, particularly ones following rainfall or thunderstorms.

Objective: The aim of this study was to determine how pollen allergens form the respirable aerosols necessary for triggering asthma.

Methods: Flowering grasses were humidified and then dried in a controlled-environment chamber connected to a cascade impactor and an aerosol particle counter. Particles shed from the flowers were analyzed with high-resolution microscopy and immunolabeled with rabbit anti-Phl p 1 antibody, which is specific for group 1 pollen allergens.

Results: Contrary to what has been reported in other published accounts, most of the pollen in this investigation remained on the open anthers of wind pollinated plants unless disturbed—eg, by wind. Increasing humidity caused anthers to close. After a cycle of wetting and drying followed by wind disturbance, grasses flowering within a chamber produced an aerosol of particles that were collected in a cascade impactor. These particles consisted of fragmented pollen cytoplasm in the size range 0.12 to 4.67 μm; they were loaded with group 1 allergens.

Conclusion: Here we provide the first direct observations of the release of grass pollen allergens as respirable aerosols. They can emanate directly from the flower after a moisture-drying cycle. This could explain asthmatic responses associated with grass pollination, particularly after moist weather conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a major allergenic protein from rye-grass pollen, tentatively designated Lol pIb of 31kDa and with pI 9.0. A cDNA clone encoding Lol pIb has been isolated, sequenced, and characterized. Lol pIb is located mainly in the starch granules. This is a distinct allergen from Lol pI, which is located in the cytosol. Lol pIb is synthesized in pollen as a pre-allergen with a transit peptide targeting the allergen to amyloplasts. Epitope mapping of the fusion protein localized the IgE binding determinant in the C-terminal domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background

Grass pollen allergens are the most important cause of hay fever and allergic asthma during summer in cool temperate climates. Pollen counts provide a guide to hay fever sufferers. However, grass pollen, because of its size, has a low probability of entering the lower airways to trigger asthma. Yet, grass pollen allergens are known to be associated with atmospheric respirable particles.
Objective

We aimed (1) to determine the concentration of group 5 major allergens in (a) pollen grains of clinically important grass species and (b) atmospheric particles (respirable and nonrespirable) and (2) to compare the atmospheric allergen load with clinical data to assess different risk factors for asthma and hay fever.
Methods

We have performed a continuous 24 h sampling of atmospheric particles greater and lower than 7.2 μm in diameter during the grass pollen season of 1996 and 1997 (17 October 1996–16 January 1997) by means of a high volume cascade impactor at a height of about 15 m above ground in Melbourne. Using Western analysis, we assessed the reactivity of major timothy grass allergen Phl p 5 specific monoclonal antibody (MoAb) against selected pollen extracts. A MoAb-based ELISA was then employed to quantify Phl p 5 and cross-reactive allergens in pollen extracts and atmospheric particles larger and smaller than 7.2 μm.
Results

Phl p 5-specific MoAb detected group 5 allergens in tested grass pollen extracts, indicating that the ELISA employed here determines total group 5 allergen concentrations. On average, 0.05 ng of group 5 allergens were detectable per grass pollen grain. Atmospheric group 5 allergen concentrations in particles > 7.2 μm were significantly correlated with grass pollen counts (rs = 0.842, P < 0.001). On dry days, 37% of the total group 5 allergen load, whereas upon rainfall, 57% of the total load was detected in respirable particles. After rainfall, the number of starch granule equivalents increased up to 10-fold; starch granule equivalent is defined as a hypothetical potential number of airborne starch granules based on known pollen count data. This indicates that rainfall tended to wash out large particles and contributed to an increase in respirable particles containing group 5 allergens by bursting of pollen grains. Four day running means of group 5 allergens in respirable particles and of asthma attendances (delayed by 2 days) were shown to be significantly correlated (P < 0.001).
Conclusion

Here we present, for the first time, an estimation of the total group 5 allergen content in respirable and nonrespirable particles in the atmosphere of Melbourne. These results highlight the different environmental risk factors for hay fever and allergic asthma in patients, as on days of rainfall following high grass pollen count, the risk for asthma sufferers is far greater than on days of high pollen count with no associated rainfall. Moreover, rainfall may also contribute to the release of allergens from fungal spores and, along with the release of free allergen molecules from pollen grains, may be able to interact with other particles such as pollutants (i.e. diesel exhaust carbon particles) to trigger allergic asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Melbourne, a southern hemisphere city with a cool temperate climate, the grass pollen season has been monitored using a Burkard spore trap for 12 years (11 pollen seasons, which extend from October through January). The onset of the grass pollen season (OGPS) has been defined in various ways using both arbitrary cumulative scores (Sum 75, Sum 100) and percentages (10% Pollen Fly). OGPS, based on the forecast model of pollen season devised by Lejoly-Gabriel (Acta Geogr. Lovan., 13 (1978) 1–260) has been most widely used in efforts to forecast the beginning of the pollen season. OGPS occurred in Melbourne between 20 October to 24 November (average 6 November), a difference of 35 days. Duration of the pollen season ranged from 46 to 81 days, with a mean of 55 days, one of the longest reported. The relationships between onset and various weather parameters for July have enabled us to modify a model, using linear regression analysis, to predict onset. The prediction model is based on a negative correlation between date of onset and the sum of rainfall for July (a winter month). The error of prediction (Ep) is 24% and predicted day of OGPS was precisely predicted on 2 occasions, and on others with a range of accuracy of 3 to 14 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Grass pollen allergens are known to be present in the atmosphere in a range of particle sizes from whole pollen grains (approx. 20 to 55 μim in diameter) to smaller size fractions < 2.5 μ (fine particles, PM2.5). These latter particles are within the respirable range and include allergen-containing starch granules released from within the grains into the atmosphere when grass pollen ruptures in rainfall and are associated with epidemics of thunderstorm asthma during the grass pollen season. The question arises whether grass pollen allergens can interact with other sources of fine particles, particularly those present during episodes of air pollution.

Objective We propose the hypothesis that free grass pollen allergen molecules, derived from dead or burst grains and dispersed in microdroplets of water in aerosols, can bind to fine particles in polluted air.

Methods We used diesel exhaust carbon particles (DECP) derived from the exhaust of a stationary diesel engine, natural highly purified Lol p 1, immunogold labelling with specific monoclonal antibodies and a high voltage transmission electron -microscopic imaging technique

Results DECP are visualized as small carbon spheres, each 30–60 nm in diameter, forming fractal aggregates about 1–2μ in diameter. Here we test our hypothesis and show by in vitro experiments that the major grass pollen allergen, Lol p I. binds to one defined class of fine particles, DECP.

Conclusion DECP are in the respirable size range, can bind to the major grass pollen allergen Lol p I under in vitro conditions and represent a possible mechanism by which allergens can become concentrated in polluted air and thus trigger attacks of asthma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A postembedding method has been developed for localizing water soluble allergens in rye-grass pollen. This uses dry fixation in glutaraldehyde vapour, followed by 2,2-dimethoxypropane, prior to a 100% ethanol series leading into embedment in LR Gold. This has allowed the attachment of specific monoclonal antibodies to the allergen, which are themselves probed with specific immunogold labels to the antibodies. Wall and cytoplasmic sites have been identified, representing an improvement of fixation and localization of allergens over previous studies employing polyclonal, broad spectrum antibodies.

Rye-grass allergens are labelled in mature pollen grains in the exine (tectum, nexine and central chamber), and in the electron opaque areas of the cytoplasm, especially mitochondria. The allergens are absent from the intine, polysaccharide (P) particles, amyloplasts, Golgi bodies and endoplasmic reticulum. IgE antibodies derived from humans allergic to rye-grass pollen, bind to similar sites in the cytoplasm but only to the outer surface of the pollen grain wall. This method now provides a valuable tool for further developmental studies on the pollen grains, in order to establish the site/s of synthesis of the allergens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pollen allergy has been found in 80–90% of childhood asthmatics and 40–50% of adult-onset asthmatics. Despite the high prevalence of atopy in asthmatics, a causal relationship between the allergic response and asthma has not been clearly established. Pollen grains are too large to penetrate the small airways where asthma occurs. Yet pollen cytoplasmic fragments are respirable and are likely correlated with the asthmatic response in allergic asthmatics. In this review, we outline the mechanism of pollen fragmentation and possible pathophysiology of pollen fragment-induced asthma. Pollen grains rupture within the male flowers and emit cytoplasmic debris when winds or other disturbances disperse the pollen. Peak levels of grass and birch pollen allergens in the atmosphere correlated with the occurrence of moist weather conditions during the flowering period. Thunderstorm asthma epidemics may be triggered by grass pollen rupture in the atmosphere and the entrainment of respirable-sized particles in the outflows of air masses at ground level. Pollen contains nicotinamide adenine dinucleotide phosphate (reduced) oxidases and bioactive lipid mediators which likely contribute to the inflammatory response. Several studies have examined synergistic effects and enhanced immune response from interaction in the atmosphere, or from co-deposition in the airways, of pollen allergens, endogenous pro-inflammatory agents, and the particulate and gaseous fraction of combustion products. Pollen and fungal fragments also contain compounds that can suppress reactive oxidants and quench free radicals. It is important to know more about how these substances interact to potentially enhance, or even ameliorate, allergic asthma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bioactive brassinosteroids have been localized in developing and mature pollen of anhydrously fixed rye-grass (Lolium perenne) by immunocytochemistry using polyclonal antibodies to castasterone generated in rabbits. Tricellular pollen fixed by freeze-substitution was also labelled in the starch granules. Study of the developmental sequence of the pollen through the microsporocyte, microspore, bicellular and tricellular stages showed that the brassinosteroids were increasingly sequestered in starch granules as the amyloplasts matured, supporting the view that these are storage organelles for these potent plant growth promoters. In bicellular pollen, heavy labelling was seen in the zone within 0.5 μm of the starch granule, where stromal tissue remains. Thus, the stroma may be the site of synthesis of these compounds. During aqueous fixation, the brassinosteroids leached from the starch granules of tricellular pollen, indicating that they would be quickly available after imbibition to influence the physiology of germinating pollen. The results from high-performance liquid chromatography of dansylaminophenylboronates from partially purified extracts of freshly dehisced tricellular pollen of rye-grass showed 25-methylcastasterone may be a minor component, together with two unknown peaks. No specific binding of brassinolide to any soluble proteins extracted from tricellular rye-grass pollen was observed using the antibodies in gel electrophoresis or enzyme-linked immunosorbent assays.