33 resultados para bioactivity

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current orthopaedic biomaterials research mainly focuses on designing implants that could induce controlled, guided and rapid healing. In the present study, the surface morphologies of titanium (Ti) and niobium (Nb) metals were tailored to form nanoporous, nanoplate and nanofibre-like structures through adjustment of the temperature in the alkali-heat treatment. The in vitro bioactivity of these structures was then evaluated by soaking the treated samples in simulated body fluid (SBF). It was found that the morphology of the modified surface significantly influenced the apatite-inducing ability. The Ti surface with a nanofibre-like structure showed better apatite-inducing ability than the nanoporous or nanoplate surface structures. A thick dense apatite layer formed on the Ti surface with nanofibre-like structure after 1 week of soaking in SBF. It is expected that the nanofibre-like surface could achieve good apatite formation in vivo and subsequently enhance osteoblast cell adhesion and bone formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present study, the formation of bioactive anatase on bulk titanium (Ti) by hybrid surface mechanical attrition treatment (SMAT) is reported. A commercial pure Ti plate first underwent SMAT in a vacuum for 1 h to produce a nanocrystalline layer with a thickness of about 30 µm, and then the nanocrystalline Ti (30 nm) was transformed into mesoporous anatase with a grain size 10 nm by chemical oxidation and calcination. The mesoporous anatase showed excellent bioactivity while being soaked in simulated body fluid, which could be attributed to the unique nanostructure on the SMAT Ti surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium foams fabricated by a new powder metallurgical process have bimodal pore distribution architecture (i.e., macropores and micropores), mimicking natural bone. The mechanical properties of the titanium foam with low relative densities of approximately 0.20-0.30 are close to those of human cancellous bone. Also, mechanical properties of the titanium foams with high relative densities of approximately 0.50-0.65 are close to those of human cortical bone. Furthermore, titanium foams exhibit good ability to form a bonelike apatite layer throughout the foams after pretreatment with a simple thermochemical process and then immersion in a simulated body fluid. The present study illustrates the feasibility of using the titanium foams as implant materials in bone tissue engineering applications, highlighting their excellent biomechanical properties and bioactivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple sol–gel method was developed for hydroxyapatite/titania (HA/TiO2) coatings on non-toxic titanium–zirconium (TiZr) alloy for biomedical applications. The HA/TiO2-coated TiZr alloy displayed excellent bioactivity when soaked in a simulated body fluid (SBF) for an appropriate period. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction and scanning electron microscopy-energy dispersive spectrometry were used to characterize the phase transformations and the surface structures and to assess the in vitro tests. The HA/TiO2 layers were spin-coated on the surface of TiZr alloy at a speed of 3000 rpm for 15 s, followed by a heat treatment at 600 °C for 20 min in an argon atmosphere sequentially. The TiO2 layer exhibited a cracked surface and an anatase structure and the HA layer displayed a uniform dense structure. Both the TiO2 and HA layers were 25 μm thick, and the total thickness of the HA/TiO2 coatings was 50 μm. The TiZr alloy after the above HA/TiO2 coatings displayed excellent bone-like apatite-forming ability when soaked in SBF and can be anticipated to be a promising load-bearing implant material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly porous titanium and titanium alloys with an open cell structure are promising implant materials due to their low elastic modulus, excellent bioactivity, biocompatibility and the ability for bone regeneration. However, the mechanical strength of the porous titanium decreases dramatically with increasing porosity, which is a prerequisite for the ingrowth of new bone tissues and vascularization. In the present study, porous titanium with porosity gradients, i.e. solid core with highly porous outer shell was successfully fabricated using a powder metallurgy approach. Satisfactory mechanical properties derived from the solid core and osseointegration capacity derived from the outer shell can be achieved simultaneously through the design of the porosity gradients of the porous titanium. The outer shell of porous titanium exhibited a porous architecture very close to
that of natural bone, i.e. a porosity of 70% and pore size distribution in the range of 200 - 500 μm. The peak stress and the elastic modulus of the porous titanium with a porosity gradient (an overall porosity 63%) under compression were approximately 152 MPa and 4 GPa, respectively. These
properties are very close to those of natural bone. For comparison, porous titanium with a uniform porosity of 63% was also prepared and haracterised in the present study. The peak stress and the elastic modulus were 109 MPa and 4 GPa, respectively. The topography of the porous titanium
affected the mechanical properties significantly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In view of previously reported anti-inflammatory bioactivity of the New Zealand Green Lipped Mussel (NZGLM), the overall lipid profile and fatty acid and sterol composition of the NZGLM from various sites in New Zealand (Hallam Cove, Port Ligar, Little Nikau) were investigated using thin layer  chromatography (TLC) and gas liquid chromatography (GLC). Samples were either frozen (F) or freeze-dried (FD) soon after collection. It was also thought prior to the study, there may be differences in the dietary sources of phytoplankton between the sites, responsible for the bioactivity, however data collected in New Zealand reported no difference in the type of phytoplankton, but a difference in the quantity. There were no major significant differences in the major components of the lipid, fatty acid and sterol composition between FD or frozen samples, nor were there any significant differences in the major composition between sites. The only major difference was between total lipid composition of the freeze-dried and frozen samples due to the removal of water during freeze-drying. Total lipid content on a dry weight basis in FD samples was 8.4 g/100g tissue and was significantly higher than frozen samples (P < 0.05) and there was no significant site variation. The lipid class content between sites was also not significantly different as judged by TLC. Triglyceride (TG) lipid fraction appeared to be the most prominent in the frozen and FD samples. The free fatty acid (FFA) band was the next most prominent band and was visually more prominent in the frozen samples. Sterol esters (SE) were detected in higher amounts in the frozen samples compared with the FD samples. Phospholipid (PL) and sterols (ST) were distributed throughout all samples. Polyunsaturated fatty acids (PUFA) were the main group of fatty acids in both FD and frozen samples (45-46%), most of which were omega-3 (n-3) fatty acids (40-41%). Saturated fatty acids (SFA) accounted for approximately one quarter of total fatty acids, with little variation between FD and frozen samples. The major fatty acids of the NZGLM were docosahexaenoic acid (DHA; 22:6n-3) (19% in both FD and frozen samples), eicosapentaenoic acid (EPA; 20:5n-3) and palmitic acid (16:0) (15% in both FD and frozen samples). Cholesterol was the most prominent sterol (31% of total sterols). Other major sterols included desmosterol/ brassicasterol (co-eluting), 24-methylenecholesterol, trans-22-dehydrocholesterol, 24- nordehydrocholesterol and occelasterol. This study is unique as it compares the lipid composition of the NZGLM from three sites in New Zealand with the additional effect of processing. This is the second comparative study investigating the lipid, fatty acid and sterol composition of the NZGLM with added interest in the effect of freeze drying on the lipid content of the mussel. This study showed that there were no major significant differences in lipid, sterol and fatty acid composition between the FD and frozen samples of the NZGLM for three sites in New Zealand. Food chain studies and further research is warranted to investigate the presence and role of major and minor lipid.
components of the NZGLM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives
The purpose of this study was to investigate the bond strength of apatite layer on titanium (Ti) substrate coated by biomimetic method and to improve the bonding of apatite layer to Ti substrate by optimizing the alkali heat-treatment process.

Methods
Ti plates pre-treated with an alkali solution of 10 M sodium hydroxide (NaOH) were heat-treated at 600 °C for 1 h at different atmospheres: in air and in vacuum. A dense apatite layer formed on top of the sodium titanate layer after soaking the alkali and heat-treated Ti samples in simulated body fluid (SBF) for up to 3 weeks. The bond strengths of the sodium titanate layer on Ti substrate, and apatite layer on the sodium titanate layer, were measured, respectively, by applying a tensile load. The fracture sites were observed with a scanning electron microscope (SEM).

Results
The apatite layer on the substrate after alkali heat-treatment in air achieved higher bond strength than that on the substrate after alkali heat-treatment in vacuum. It was found that the interfacial structure between the sodium titanate and Ti substrate has a significant influence on the bond strength of the apatite layer.

Significance
It is advised that titanium implants can achieve better osseointegration under load-bearing conditions by depositing an apatite layer in vivo on a Ti surface subjected to alkali and heat-treated in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous Ti–18 at.%Nb–4 at.%Sn (hereafter, Ti–18Nb–4Sn) alloy was prepared by powder metallurgy. The porous structures were examined by scanning electron microscopy and the phase constituents were analysed by X-ray diffraction. Mechanical properties of the porous alloy were investigated using a compressive test. To enhance the bioactivity of the alloy surface, alkali-heat treatment was used to modify the surface. The bioactivity of the pre-treated alloy sample was investigated using a biomimetic process by soaking the sample into simulated body fluid (SBF). Results indicate that the elastic modulus and plateau stress of the porous Ti–18Nb–4Sn alloy decrease with decreasing relative density. The mechanical properties of the porous alloy can be tailored to match those of human bone. After soaking in SBF for 7 days, a hydroxyapatite layer formed on the surface of the pre-treated porous Ti–18Nb–4Sn alloy. The pre-treated porous Ti–18Nb–4Sn alloy therefore has the potential to be a bioactive implant material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain contains two main polyunsaturated fatty acids (PUFA), arachidonic acid (AA) and docosahexaenoic acid (DHA). These PUFA are located almost exclusively in the sn2-position of phosphoglycerides which are found in the neural cell membranes. Liberation of these PUFA from the phosphoglycerides occurs via the action of specific phospholipases (PLA2). Free AA can be metabolised by cyclooxygenases to prostaglandins and  thromboxane, while both AA and DHA can be metabolised by lipoxygenases to form hydroxy derivatives and leukotrienes. AA is also metabolised to  lipoxins via the 5-lipoxygenase pathway. The eicosanoids formed play important roles in neural function including sleep induction (PGD2), long  term potentiation, spatial learning and synaptic plasticity (PGE2), resolution of inflammation (lipoxins) and anti-inflammatory and neuroprotective  bioactivity (dihydroxy-docosatriene, neuroprotectin D1, formed from DHA). COX-inhibitors have been shown to reduce oxidative stress and cognitive impairment. Additionally, drugs which are used to treat depression have been shown to reduce the turnover of AA to PGE2 in the brain. Diets deficient in omega 3 PUFA lead to reduced DHA in the brain and increased turnover of AA to eicosanoids, an effect which is overcome by restoring the omega 3 PUFA to the diet. In neural trauma and neurodegenerative diseases, there is a dramatic rise in the levels of AA-derived eicosanoids. In contrast,  DHA-derived compounds can prevent neuroinflammation. Clearly, the eicosanoids are very important for the normal functioning of the brain, while the PUFA themselves are important in membrane structure and function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A porous Ti-16Sn-4Nb alloy with an average pore size of 300 µm and porosity of 60 % was prepared by powder metallurgy, and a bone-like apatite coating was obtained by soaking the samples in a concentrated simulated body fluid (lOx SBF). The changes of the microstructure and composition on the surface with soaking time were investigated by using X-ray diffractometry (XRD), and scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS), The bone-like apatite granules started to deposit throughout the porous Ti alloy foam aner 1 h soaking, and the number of granules increased with the increase of the soaking time. A uniform bone-like apatite layer covered the entire surface of the sample after soaking in Ihe lOx SBF for 6h. The Ti-16Sn-4Nb foam showed a good bioactivity after a thermochemical process and soaking into a 1Ox SBF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our proprietary preparation obtained by extraction of Chlorella pyrenoidosa cells, ONC-107 (Respondin™), was recently found to selectively boost antibody response to the influenza vaccine in a human clinical trial. Respondin™ is a potent stimulator of mouse B cell proliferation and an activator of macrophages. Bioactivity-guided resolution concluded that Respondin™ is composed of a mixture of immunostimulatory principles of different chemical nature. A combination of size exclusion, anion exchange and hydrophobic interaction chromatography revealed that the bulk of the immunostimulatory activity resides in polysaccharide/protein complexes with molecular masses larger than 100 kDa that are composed primarily of galactose, rhamnose and arabinose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A salmon protein hydrolysate (SPH) was developed containing several angiotensin I-converting enzyme (ACE) inhibitory tripeptides the most abundant of which were Val-Leu-Trp, Val-Phe-Tyr, and Leu-Ala-Phe. Simulated digestion experiments showed that active constituents of SPH would survive in the digestive tract and be available for absorption into the bloodstream. In fact, ACE inhibitory activity was improved following simulated digestion suggesting that there were larger peptides in SPH that might contribute to bioactivity in vivo. A single oral dose (1,500 mg/kg body mass) of SPH significantly lowered blood pressure in spontaneously hypertensive rats (SHR). The treatment of SHR with either SPH fraction (<3,000 Da) or SPH fraction (>3,000 Da) reduced blood pressure. We conclude that the ability of SPH to lower blood pressure is due to a combination of ACE inhibitory tripeptides as identified, as well as additional unknown, peptide species that are generated during digestion of SPH in the gastrointestinal tract.