11 resultados para Transgenic plants

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transgenic plants expressing single-chain antibodies have been produced to investigate the feasibility of antibody-mediated broad-spectrum protection against plant virus infections. This study indicates that protection against a wide range of plant viruses can be achieved in transgenic plants expressing a single antibody construct.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arabidopsis thaliana ecotype Columbia-0 was transformed with a green fluorescent protein (GFP) gene under control of a phenylalanine ammonia-lyase (PAL) promoter. PAL is a key enzyme of the phenylpropanoid pathway and is induced to high levels during plant stress. Constitutive expression of PAL1 promoter-controlled GFP occurred in vascular tissues within stems, leaves and roots and in developing flowers. PAL1 promoter–GFP expression was examined in leaves of transgenic plants subjected to an abiotic elicitor, mechanical wounding or to inoculation with the pathogens Pseudomonas syringae pv. tomato or Peronospora parasitica. Wounding of leaves and treatment with an abiotic elicitor and compatible interactions produced low to moderate levels of GFP. However, in incompatible interactions there were high levels of GFP produced. In incompatible interactions, the intensity of GFP fluorescence was similar to that produced in transgenic plants expressing GFP driven by the CaMV promoter. The bright green fluorescence produced in live cells and tissues was readily visualised using conventional fluorescence microscopy and was quantified using spectroflourometry. This is the first report of the use of GFP as a reporter of defence gene activation against pathogens. It has several advantages over other reporter genes including real time analysis of gene expression and visualisation of defence gene activation in a non-invasive manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metagenomics provides culture-independent access to gene pool of the whole microbial communities. To identify genes responsible for salt tolerance in unculturable bacteria, Escherichia coli clones were enriched with an ability to grow at inhibitory NaCl concentrations (750 mM) from a pond water metagenomic library. From two unique clones, genes encoding for proteins with similarity to a putative general stress protein (GspM) harbouring GsiB domain and a putative enoyl-CoA hydratase (EchM) were identified to be responsible for salt tolerance. The gspM was expressed by its native promoter whereas the echM was expressed from the lacZ promoter of the plasmid. EchM was overexpressed with a hexahistidyl tag. Purified EchM showed crotonyl-CoA hydratase activity. These genes have potential application in generating salt tolerant recombinant bacteria or transgenic plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project investigated how plants respond to invading pathogens using microscopic, biochemical and genetic approaches. The development of transgenic plants containing the green fluorescent protein cloned from jellyfish enabled a new approach to studying plant defence genes. In particular, the role and involvement of the plant gene PAL1 was analysed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isolation of gene transcripts from desiccated leaf tissues of the resurrection grass, Sporobolus stapfianus, resulted in the identification of a gene, SDG8i, encoding a Group 1 glycosyltransferase (UGT). Here, we examine the effects of introducing this gene, under control of the CaMV35S promoter, into the model plant Arabidopsis thaliana. Results show that Arabidopsis plants constitutively over-expressing SDG8i exhibit enhanced growth, reduced senescence, cold tolerance and a substantial improvement in protoplasmic drought tolerance. We hypothesise that expression of SDG8i in Arabidopsis negatively affects the bioactivity of metabolite/s that mediate/s environmentally-induced repression of cell division and expansion, both during normal development and in response to stress. The phenotype of transgenic plants over-expressing SDG8i suggests modulation in activities of both growth- and stress-related hormones. Plants overexpressing the UGT show evidence of elevated auxin levels, with the enzyme acting downstream of ABA to reduce drought-induced senescence. Analysis of the in vitro activity of the UGT recombinant protein product demonstrates that SDG8i can glycosylate the synthetic strigolactone analogue GR24, evoking a link with strigolactone-related processes in vivo. The large improvements observed in survival of transgenic Arabidopsis plants under cold-, salt- and drought-stress, as well as the substantial increases in growth rate and seed yield under non-stress conditions, indicates that overexpression of SDG8i in crop plants may provide a novel means of increasing plant productivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The wound-inducible quinolinate phosphoribosyl transferase promoter from Nicotiana tabacum (NtQPT2) was assessed for its capacity to produce B-subunit of the heat-labile toxin (LTB) from enterotoxigenic Escherichia coli in transgenic plant tissues. Comparisons were made with the widely used and constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter. The NtQPT2 promoter produced somewhat lower average concentrations of LTB protein per unit weight of hairy root tissue but allowed better growth thereby producing similar or higher overall average yields of LTB per culture batch. Transgenic tobacco plants containing the NtQPT2-LTB construct contained LTB protein in roots but not leaves. Moreover, wounding NtQPT2-LTB transgenic plants, by removal of apices, resulted in an approximate 500% increase in LTB levels in roots when analysed several days later. CaMV35S-LTB transgenic plants contained LTB protein in leaves and roots but wounding made no difference to their LTB content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.