9 resultados para T cell epitopes

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing question in the field of immunology concerns the factors that contribute to Th cell epitope immunodominance. For a number of viral membrane proteins, Th cell epitopes are localized to exposed protein surfaces, often overlapping with Ab binding sites. It has therefore been proposed that Abs on B cell surfaces selectively bind and protect exposed protein fragments during Ag processing, and that this interaction helps to shape the Th cell repertoire. While attractive in concept, this hypothesis has not been thoroughly tested. To test this hypothesis, we have compared Th cell peptide immunodominance in normal C57BL/6 mice with that in C57BL/6MT/MT mice (lacking normal B cell activity). Animals were first vaccinated with DNA constructs expressing one of three different HIV envelope proteins, after which the CD4 T cell response profiles were characterized toward overlapping peptides using an IFN- ELISPOT assay. We found a striking similarity between the peptide response profiles in the two mouse strains. Profiles also matched those of previous experiments in which different envelope vaccination regimens were used. Our results clearly demonstrate that normal Ab activity is not required for the establishment or maintenance of Th peptide immunodominance in the HIV envelope response. To explain the clustering of Th cell epitopes, we propose that localization of peptide on exposed envelope surfaces facilitates proteolytic activity and preferential peptide shuttling through the Ag processing pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction of a cytotoxic T lymphocyte (CTL) response following influenza infection can lead to the formation of immunity capable of recognizing viruses of a different antigenicity. Our ability to exploit such broadly reactive responses in vaccination strategies is hampered by a lack of understanding on the regulation of CTL responses. In this report, we describe the utilization of reverse genetics to produce a range of recombinant viruses lacking immunodominant murine CTL epitopes. Recombinant viruses lacking the epitopes had indistinguishable growth properties in vitro and in vivo compared with the wild-type virus. Analysis of a primary immune response to these viruses showed that mutation of the anchor-binding residue leads to a loss of a response to that epitope, but no compensating increase in responses to other immunodominant epitopes. The utilization of reverse genetics and the murine model of influenza infection hold great promise for elucidating the factors regulating the CTL response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although CD8+ T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8+ T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8+ T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8+ and CD4+ T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8α+ subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major obstacle to the design of a global HIV-1 vaccine is viral diversity. At present, data suggest that a vaccine comprising a single antigen will fail to generate broadly reactive B-cell and T-cell responses able to confer protection against the diverse isolates of HIV-1. While some B-cell and T-cell epitopes lie within the more conserved regions of HIV-1 proteins, many are localized to variable regions and differ from one virus to the next. Neutralizing B-cell responses may vary toward viruses with different i) antibody contact residues and/or ii) protein conformations while T-cell responses may vary toward viruses with different (i) T-cell receptor contact residues and/or (ii) amino acid sequences pertinent to antigen processing. Here we review previous and current strategies for HIV-1 vaccine development. We focus on studies at St. Jude Children's Research Hospital (SJCRH) dedicated to the development of an HIV-1 vaccine cocktail strategy. The SJCRH multi-vectored, multi-envelope vaccine has now been shown to elicit HIV-1-specific B- and T-cell functions with a diversity and durability that may be required to prevent HIV-1 infections in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent to which CD8+ T cells specific for other antigens expand to compensate for the mutational loss of the prominent DbNP366 and DbPA224 epitopes has been investigated using H1N1 and H3N2 influenza A viruses modified by reverse genetics. Significantly increased numbers of CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ T cells were found in the spleen and in the inflammatory population recovered by bronchoalveolar lavage from mice that were first given the -NP-PA H1N1 virus intraperitoneally and then challenged intranasally with the homologous H3N2 virus. The effect was less consistent when this prime-boost protocol was reversed. Also, though the quality of the response measured by cytokine staining showed some evidence of modification when these minor CD8+-T-cell populations were forced to play a more prominent part, the effects were relatively small and no consistent pattern emerged. The magnitude of the enhanced clonal expansion following secondary challenge suggested that the prime-boost with the -NP-PA viruses gave a response overall that was little different in magnitude from that following comparable exposure to the unmanipulated viruses. This was indeed shown to be the case when the total response was measured by ELISPOT analysis with virus-infected cells as stimulators. More surprisingly, the same effect was seen following primary challenge, though individual analysis of the CD8+ KbPB1703+ , CD8+ KbNS2114+, and CD8+ DbPB1-F262+ sets gave no indication of compensatory expansion. A possible explanation is that novel, as yet undetected epitopes emerge following primary exposure to the -NP-PA deletion viruses. These findings have implications for both natural infections and vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allergen absorption by epithelia may play an important role in downstream immune responses. Transport mechanisms that can bypass Peyer's patches include transcellular and paracellular transport. The capacity of an allergen to cross via these means can modulate downstream processing of the allergen by the immune system. The aim of this study was to investigate allergen-epithelial interactions of peanut allergens with the human intestinal epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanomaterials are rich in potential, particularly for the formation of scaffolds that mimic the landscape of the host environment of the cell. This niche arises from the spatial organization of a series of biochemical and biomechanical signals. Self-assembling peptides have emerged as an important tool in the development of functional (bio-)nanomaterials; these simple, easily synthesized subunits form structures which present the properties of these larger, more complex systems. Scaffolds based upon these nanofibrous matrices are promising materials for regenerative medicine as part of a new methodology in scaffold design where a "bottom-up" approach is used in order to simulate the native cellular milieu. Importantly, SAPs hold the potential to be bioactive through the presentation of biochemical and biomechanical signals in a context similar to the natural extracellular matrix, making them ideal targets for providing structural and chemical support in a cellular context. Here, we discuss a new methodology for the presentation of biologically relevant epitopes through their effective presentation on the surface of the nanofibers. Here, we demonstrate that these signals have a direct effect on the viability of cells within a three-dimensional matrix as compared with an unfunctionalized, yet mechanically and morphologically similar system. © 2014 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 102: 197-205, 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.