7 resultados para Phosphates

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing corrosion protection technologies for aluminium alloys utilising chromates are environmentally damaging and extremely toxic. This paper presents a preliminary investigation into rare earth diphenyl phosphates as new environmentally benign corrosion inhibitors. Full immersion weight loss experiments, cyclic potentiodynamic polarisation measurements and Raman spectroscopy were used in this study. Results show cerium diphenyl phosphate (Ce(dpp)3) acts as a cathodic inhibitor, decreasing cathodic current density and Ecorr by passivating cathodic intermetallic particles on the alloy surface. Mischmetal diphenyl phosphate (Mm(dpp)3) acts a mixed inhibitor, shifting Ecorr to more noble values, decreasing cathodic current density, increasing the breakdown potential and suppressing pitting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of rare earth organic compounds pioneered by our group have been shown to provide a viable alternative to theuse of chromates as corrosion inhibitors for some steel and aluminium applications. For example we have shown thatthe lanthanum 4-hydroxy cinnamate offers excellent corrosion mitigation for mild steel in aqueous environments whilerare earth diphenyl phosphates offer the best protection in the case of aluminium alloys. In both cases the protectionappears to be related to the formation of a nanometre thick interphase occurring on the surface that reduces theelectrochemical processes leading to metal loss or pitting. Very recent work has indicated that we may even be able toaddress the challenging issue of stress corrosion cracking of high strength steels. Furthermore, filiform corrosion can besuppressed when selected rare earth inhibitor compounds are added as pigments to a polymer coating. There is little doubtfrom the work thus far that a synergy exists between the rare earth and organic inhibitor components in these novelcompounds. This paper reviews some of the published research conducted by the senior author and colleagues over the past10 years in this developing field of green corrosion inhibitors

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder is a common, chronic, and complex mental illness. Bipolar disorder is frequently comorbid with primary mitochondrial and metabolic disorders, and studies have implicated mitochondrial dysfunction in its pathophysiology. In the brains of people with bipolar disorder, high-energy phosphates are decreased, lactate is elevated and pH decreased, which together suggest a shift toward glycolysis for energy production. Furthermore, oxidative stress is increased, and calcium signalling dysregulated. Additionally there is downregulation of the expression of mitochondrial complexes, especially complex I. The therapeutic effects of some bipolar disorder drugs have recently been shown to be related to these mechanisms. In this review we will evaluate current research on the interactions between mitochondrial dysfunction and bipolar disorder pathology. We will then appraise the current literature describing the effects of bipolar disorder drugs on mitochondrial function, and discuss ramifications for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bipolar disorder (BD) is a chronic psychiatric illness characterized by severe and biphasic changes in mood. Several pathophysiological mechanisms have been hypothesized to underpin the neurobiology of BD, including the presence of mitochondrial dysfunction. A confluence of evidence points to an underlying dysfunction of mitochondria, including decreases in mitochondrial respiration, high-energy phosphates and pH; changes in mitochondrial morphology; increases in mitochondrial DNA polymorphisms; and downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration. Mitochondria play a pivotal role in neuronal cell survival or death as regulators of both energy metabolism and cell survival and death pathways. Thus, in this review, we discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BD. The final part of this review discusses mitochondria as a potential target of therapeutic interventions in BD.