36 resultados para MORPHOGENETIC PROTEIN-7

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian transcription factor SPI-1 (synonyms: SPI1, PU.1, or Sfpi1) plays a critical role in myeloid development. To examine early myeloid commitment in the zebrafish embryo, we isolated a gene from zebrafish that is a SPI-1 orthologue on the basis of homology and phylogenetic considerations. The zebrafish spi1 (pu1) gene was first expressed at 12 h postfertilization in rostral lateral plate mesoderm (LPM), anatomically isolated from erythroid development in caudal lateral plate mesoderm. Fate-mapping traced rostral LPM cells from the region of initial spi1 expression to a myeloid fate. spi1 expression was lost in the bloodless mutant cloche, but rostral spi1 expression and myeloid development were preserved in the mutant spadetail, despite its complete erythropoietic failure. This dissociation of myeloid and erythroid development was further explored in studies of embryos overexpressing BMP-4, or chordin, in bmp-deficient swirl and snailhouse mutants, and chordin-deficient chordino mutants. These studies demonstrate that, in zebrafish, spi1 marks a rostral population of LPM cells committed to a myeloid fate anatomically separated from and developmentally independent of erythroid commitment in the caudal LPM. Such complete anatomical and developmental dissociation of two hematopoietic lineages adds an interesting complexity to the understanding of vertebrate hematopoietic development and presents significant implications for the mechanisms regulating axial patterning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using differential display polymerase chain reaction, a gene was identified in CD34+-enriched populations that had with low or absent expression in CD34- populations. The full coding sequence of this transcript was obtained, and the predicted protein has a high degree of homology to oxysterol-binding protein. This gene has been designated OSBP-related protein 3 (ORP-3). Expression of ORP-3 was found to be 3- to 4-fold higher in CD34+ cells than in CD34- cells. Additionally, expression of this gene was 2-fold higher in the more primitive subfraction of hematopoietic cells defined by the CD34+38- phenotype and was down-regulated with the proliferation and differentiation of CD34+ cells. The ORP-3 predicted protein contains an oxysterol-binding domain. Well-characterized proteins expressing this domain bind oxysterols in a dose-dependent fashion. Biologic activities of oxysterols include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, among them hematopoietic cells. Characterization and differential expression of ORP-3 implicates a possible role in the mediation of oxysterol effects on hematopoiesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residents from high level (nursing homes) and low-level care facilities (hostel) being served the three common diet texture modifications (full diet, soft-minced diet and pureed diet) were assessed. Individual plate waste was estimated at three meals on one day. Fifty-six males and 156 females, mean age 82.9+/-9.5 (SD) years, of which 139 lived in nursing homes (NH) and 76 in hostels (H) were included. Mean total energy served from meals was 5.3 MJ/day, 5.1 to 5.6 MJ/day, 95% confidence intervals (CI), in NH which was less than in H, 5.9 MJ/day (CI 5.6 to 6.2 MJ/day) (P=0.007). Protein and calcium intakes were lower in NH, 44.5g (CI 41.5 to 47.5g), 359.0mg (CI 333.2 to 384.8mg), versus 50.5g (CI 46.6 to 54.3g), 480.5mg (CI 444.3 to 516.7mg) in H (P=0.017, P<0.001 respectively). There was no difference in nutrient/energy ratios, except for protein/energy, which was higher in NH 11.7 (CI 11.3 to 12.2) than in H 9.8 (CI 9.4 to 10.3) (P<0.001). Ability to self-feed had no significant effect on nutrient intakes in NH. The self fed group (N=63) had the following nutrient intakes: energy 4.0 MJ (CI 3.6 to 4.3 MJ), protein 44.6g (CI 40.3 to 48.9g), calcium 356.9mg (CI 316.3 to 397.4mg), fibre 14.9g (CI 13.2 to 16.5g). The assisted group (N=64) had the following nutrient intakes: energy 3.9MJ (CI 3.6 to 4.2MJ), protein 46.0g (CI 40.7 to 49.6), calcium 361.9mg (CI 327.8 to 396.1mg), fibre 14.9g (CI 13.2 to 16.1g). Of NH classified as eating impaired, 36% received no assistance with feeding and had lower intakes of protein 37.8g (CI 33.0 to 42.1g) compared to those receiving some assistance 46.1g (CI 41.3 to 50.9g) (P=0.026). Reduced energy intake accounted for the differences in nutrient intakes between nursing homes and hostels, except for protein. Strategies to effectively monitor nutrient intakes and to identify those with eating impairment are required in order to ensure adequate nutrition of residents in nursing homes and hostels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six untrained, male subjects (23 ± 1 years old, 84 ± 5 kg, VO2peak= 3.7 ± 0.8 l min–1) exercised for 60 min at 75 ± 1%VO2peak on 7 consecutive days.  Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by ~20% and muscle glycogen concentration by ~40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those  measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 ± 1.5 versus 3.4 ± 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 ± 3.0 versus 3.4 ± 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
AMP-activated protein kinase (AMPK) has emerged as a significant signaling intermediary that regulates metabolisms in response to energy demand and supply. An investigation into the degree of activation and deactivation of AMPK subunits under exercise can provide valuable data for understanding AMPK. In particular, the effect of AMPK on muscle cellular energy status makes this protein a promising pharmacological target for disease treatment. As more AMPK regulation data are accumulated, data mining techniques can play an important role in identifying frequent patterns in the data. Association rule mining, which is commonly used in market basket analysis, can be applied to AMPK regulation.

Results
This paper proposes a framework that can identify the potential correlation, either between the state of isoforms of α, β and γ subunits of AMPK, or between stimulus factors and the state of isoforms. Our approach is to apply item constraints in the closed interpretation to the itemset generation so that a threshold is specified in terms of the amount of results, rather than a fixed threshold value for all itemsets of all sizes. The derived rules from experiments are roughly analyzed. It is found that most of the extracted association rules have biological meaning and some of them were previously unknown. They indicate direction for further research.

Conclusion
Our findings indicate that AMPK has a great impact on most metabolic actions that are related to energy demand and supply. Those actions are adjusted via its subunit isoforms under specific physical training. Thus, there are strong co-relationships between AMPK subunit isoforms and exercises. Furthermore, the subunit isoforms are correlated with each other in some cases. The methods developed here could be used when predicting these essential relationships and enable an understanding of the functions and metabolic pathways regarding AMPK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Riboflavin-responsive, multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) ß-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA ß-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression. A battery of biochemical and molecular tests were performed, which demonstrated decreases in FA ß-oxidation and in the activities of respiratory chain complexes I and II. These metabolic alterations were associated with increases of 3.1- and 1.7-fold in UCP3 mRNA and protein expression, respectively. All parameters were restored to control values after riboflavin treatment. We postulate that the up-regulation of UCP3 in RR-MAD is due to the accumulation of muscle FA/acylCoA. RR-MAD is an optimal model to support the hypothesis that UCP3 is involved in the outward translocation of an excess of FA from the mitochondria and to show that, in humans, the effects of FA on UCP3 expression are direct and independent of fatty acid ß-oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer473and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 ± 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased (~30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer473was ~50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer473and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer473on the improvement in insulin sensitivity requires further elucidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selenoprotein S (SEPS1) is a novel endoplasmic reticulum (ER) resident protein and it is known to play an important role in production of inflammatory cytokines. Here, we show evidence that SEPS1 is stimulated by pharmacological ER stress agents in RAW264.7 macrophages as well as other cell types. Overexpression studies reveal a protective action of SEPS1 in macrophages against ER stress-induced cytotoxicity and apoptosis, resulting in promoting cell survival during ER stress. The protective action of SEPS1 is largely dependent on ER stress-mediated cell death signal with less effect on non-ER stress component cell death signals. Conversely, suppression of SEPS1 in macrophages results in sensitization of cells to ER stress-induced cell death. These findings suggest that SEPS1 could be a new ER stress-dependent survival factor that protects macrophage against ER stress-induced cellular dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The multidrug resistance associated protein (MRP) 4 is a member of the adenosine triphosphate (ATP)-binding cassette transporter family. Camptothecins (CPTs) have shown substantial anticancer activity against a broad spectrum of tumors by inhibiting DNA topoisomerase I, but tumor resistance is one of the major reasons for therapeutic failure. P-glycoprotein, breast cancer resistance protein, MRP1, and MRP2 have been implicated in resistance to various CPTs including CPT-11 (irinotecan), SN-38 (the active metabolite of CPT-11), and topotecan. In this study, we explored the resistance profiles and intracellular accumulation of a panel of CPTs including CPT, CPT-11, SN-38, rubitecan, and 10-hydroxy-CPT (10-OH-CPT) in HepG2 cells with stably overexpressed human MRP4. Other anticancer agents such as paclitaxel, cyclophosphamide, and carboplatin were also included.
Methods HepG2 cells were transfected with an empty vehicle plasmid (V/HepG2) or human MRP4 (MRP4/HepG2). The resistance profiles of test drugs in exponentially growing V/HepG2 and MRP4/HepG2 cells were examined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide (MTT) assay with 4 or 48 h exposure time of the test drug in the absence or presence of various MRP4 inhibitors. The accumulation of CPT-11, SN-38, and paclitaxel by V/HepG2 and MRP4/HepG2 cells was determined by validated high-performance liquid chromatography methods.
Results Based on the resistance folds from the MTT assay with 48 h exposure time of the test drug, MRP4 conferred resistance to CPTs tested in the order 10-OH-CPT (14.21) > SN-38 carboxylate (9.70) > rubitecan (9.06) > SN-38 lactone (8.91) > CPT lactone (7.33) > CPT-11 lactone (5.64) > CPT carboxylate (4.30) > CPT-11 carboxylate (2.68). Overall, overexpression of MRP4 increased the IC50 values 1.78- to 14.21-fold for various CPTs in lactone or carboxylate form. The resistance of MRP4 to various CPTs tested was significantly reversed in the presence of dl-buthionine-(S,R)-sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor), MK571, celecoxib, or diclofenac (all MRP4 inhibitors). In addition, the accumulation of CPT-11 and SN-38 over 120 min in MRP4/HepG2 cells was significantly reduced compared to V/HepG2 cells, whereas the addition of celecoxib, MK571, or BSO significantly increased their accumulation in MRP4/HepG2 cells. There was no significant difference in the intracellular accumulation of paclitaxel in V/HepG2 and MRP4/HepG2 cells, indicating that P-glycoprotein was not involved in the observed resistance to CPTs in this study. MRP4 also conferred resistance to cyclophosphamide and this was partially reversed by BSO. However, MRP4 did not increase resistance to paclitaxel, carboplatin, etoposide (VP-16), 5-fluorouracil, and cyclosporine.
Conclusions Human MRP4 rendered significant resistance to cyclophosphamide, CPT, CPT-11, SN-38, rubitecan, and 10-OH-CPT. CPT-11 and SN-38 are substrates for MRP4. Further studies are needed to explore the role of MRP4 in resistance, toxicity, and pharmacokinetics of CPTs and cyclophosphamide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: The mitochondrial uncoupling protein-3 (UCP3) has been implicated in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Recent evidence points toward mitochondrial aberrations as a major contributor to the development of insulin resistance and diabetes, and UCP3 is reduced in diabetes.
Objective: We compared skeletal muscle UCP3 protein levels in prediabetic subjects [i.e. impaired glucose tolerance (IGT)], diabetic patients, and healthy controls and examined whether rosiglitazone treatment was able to restore UCP3.
Patients, Design, Intervention: Ten middle-aged obese men with type 2 diabetes mellitus [age, 61.4 ± 3.1 yr; body mass index (BMI), 29.8 ± 2.9 kg/m2], nine IGT subjects (age, 59.0 ± 6.6 yr; BMI, 29.7 ± 3.0 kg/m2), and 10 age- and BMI-matched healthy controls (age, 57.3 ± 7.4 yr; BMI, 30.1 ± 3.9 kg/m2) participated in this study. After baseline comparisons, diabetic patients received rosiglitazone (2 x 4 mg/d) for 8 wk.
Main Outcome Measures: Muscle biopsies were sampled to determine UCP3 and mitochondrial protein (complex I–V) content.
Results: UCP3 protein content was significantly lower in prediabetic IGT subjects and in diabetic patients compared with healthy controls (39.0 ± 28.5, 47.2 ± 24.7, and 72.0 ± 23.7 arbitrary units, respectively; P < 0.05), whereas the levels of the mitochondrial protein complex I–V were similar between groups. Rosiglitazone treatment for 8 wk significantly increased insulin sensitivity and muscle UCP3 content (from 53.2 ± 29.9 to 66.3 ± 30.9 arbitrary units; P < 0.05).
Conclusion: We show that UCP3 protein content is reduced in prediabetic subjects and type 2 diabetic patients. Eight weeks of rosiglitazone treatment restores skeletal muscle UCP3 protein in diabetic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.