31 resultados para Chlamydia Pneumoniae, Chronic Infections, Gene Regulation, Human

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene GAD2 encoding the glutamic acid decarboxylase enzyme (GAD65) is a positional candidate gene for obesity on Chromosome 10p11–12, a susceptibility locus for morbid obesity in four independent ethnic populations. GAD65 catalyzes the formation of γ-aminobutyric acid (GABA), which interacts with neuropeptide Y in the paraventricular nucleus to contribute to stimulate food intake. A case-control study (575 morbidly obese and 646 control subjects) analyzing GAD2 variants identified both a protective haplotype, including the most frequent alleles of single nucleotide polymorphisms (SNPs) +61450 C>A and +83897 T>A (OR = 0.81, 95% CI [0.681–0.972], p = 0.0049) and an at-risk SNP (−243 A>G) for morbid obesity (OR = 1.3, 95% CI [1.053–1.585], p = 0.014). Furthermore, familial-based analyses confirmed the association with the obesity of SNP +61450 C>A and +83897 T>A haplotype (χ2 = 7.637, p = 0.02). In the murine insulinoma cell line βTC3, the G at-risk allele of SNP −243 A>G increased six times GAD2 promoter activity (p < 0.0001) and induced a 6-fold higher affinity for nuclear extracts. The −243 A>G SNP was associated with higher hunger scores (p = 0.007) and disinhibition scores (p = 0.028), as assessed by the Stunkard Three-Factor Eating Questionnaire. As GAD2 is highly expressed in pancreatic β cells, we analyzed GAD65 antibody level as a marker of β-cell activity and of insulin secretion. In the control group, −243 A>G, +61450 C>A, and +83897 T>A SNPs were associated with lower GAD65 autoantibody levels (p values of 0.003, 0.047, and 0.006, respectively). SNP +83897 T>A was associated with lower fasting insulin and insulin secretion, as assessed by the HOMA-B% homeostasis model of β-cell function (p = 0.009 and 0.01, respectively). These data support the hypothesis of the orexigenic effect of GABA in humans and of a contribution of genes involved in GABA metabolism in the modulation of food intake and in the development of morbid obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated the molecular responses of human epithelial cells to low dose arsenic to ascertain how target cells may respond to physiologically relevant concentrations of arsenic. Data gathered in numerous experiments in different cell types all point to the same conclusion: low dose arsenic induces what appears to be a protective response against subsequent exposure to oxidative stress or DNA damage, whereas higher doses often provoke synergistic toxicity. In particular, exposure to low, sub-toxic doses of arsenite, As(III), causes coordinate up-regulation of multiple redox and redox-related genes including thioredoxin (Trx) and glutathione reductase (GR). Glutathione peroxidase (GPx) is down-regulated in fibroblasts, but up-regulated in keratinocytes, as is glutathione S-transferase (GST). The maximum effect on these redox genes occurs after 24 h exposure to 5–10 mM As(III). This is 10-fold higher than the maximum As(III) concentrations required for induction of DNA repair genes, but within the dose region where DNA repair genes are co-ordinately down-regulated. These changes in gene regulation are brought about in part by changes in DNA binding activity of the transcription factors activating protein-1 (AP-1), nuclear factor kappa-B, and cAMP response element binding protein (CREB). Although sub-acute exposure to micromolar As(III) up-regulates transcription factor binding, chronic exposure to submicromolar As(III) causes persistent down-regulation of this response. Similar long-term exposure to micromolar concentrations of arsenate in drinking water results in a decrease in skin tumour formation in dimethylbenzanthracene (DMBA)/phorbol 12-tetradecanoate 13-acetate (TPA) treated mice. Altered response patterns after long exposure to As(III) may play a significant role in As(III) toxicology in ways that may not be predicted by experimental protocols using short-term exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic is an established human carcinogen. However, there has been much controversy about the shape of the arsenic response curve, particularly at low doses. This controversy has been exacerbated by the fact that the  mechanism(s) of arsenic carcinogenesis are still unclear and because there are few satisfactory animal models for arsenic-induced carcinogenesis. Recent epidemiological studies have shown that the relative risk for cancer among populations exposed to ≤60 ppb As in their drinking water is often lower than the risk for the unexposed control population. We have found that treatment of human keratinocyte and fibroblast cells with 0.1 to 1 μM arsenite (AsIII) also produces a low dose protective effect against oxidative stress and DNA damage. This response includes increased transcription, protein levels and enzyme activity of several base excision repair genes, including DNA polymerase β and DNA ligase I. At higher concentrations (> 10 μM), As induces down-regulation of DNA repair, oxidative DNA damage and apoptosis. This low dose adaptive (protective) response by a toxic agent is known as hormesis and is characteristic of many agents that induce oxidative stress. A mechanistic model for arsenic carcinogenesis based on these data would predict that the low dose risk for carcinogenesis should be sub-linear. The threshold dose where toxicity outweighs protection is hard to predict based on in vitro dose response data, but might be estimated if one could determine the form (metabolite) and concentration of arsenic responsible for changes in gene regulation in the target tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral infections leading to carcinogenesis tops the risk factors list for the development of human cancer. The decades of research has provided ample scientific evidence that directly links 10-15% of the worldwide incidence of human cancers to the infections with seven human viruses. Moreover, the insights gained into the molecular pathogenetic and immune mechanisms of hepatitis B virus (HBV) and human papillomavirus (HPV) viral transmission to tumour progression, and the identification of their viral surface antigens as well as oncoproteins have provided the scientific community with opportunities to target these virus infections through the development of prophylactic vaccines and antiviral therapeutics. The preventive vaccination programmes targeting HBV and high risk HPV infections, linked to hepatocellular carcinoma (HCC) and cervical cancer respectively have been recently reported to alter age-old cancer patterns on an international scale. In this review, with an emphasis on HBV and HPV mediated carcinogenesis because of the similarities and differences in their global incidence patterns, viral transmission, mortality, molecular pathogenesis and prevention, we focus on the development of recently identified HBV and HPV targeting innovative strategies resulting in several patents and patent applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) to inhibit protein translation. A broad range of regulatory functions has also been attributed to PKR. However, as few additional PKR substrates have been identified, the mechanisms remain unclear. Here, PKR is shown to interact with an essential RNA helicase, RHA. Moreover, RHA is identified as a substrate for PKR, with phosphorylation perturbing the association of the helicase with double-stranded RNA (dsRNA). Through this mechanism, PKR can modulate transcription, as revealed by its ability to prevent the capacity of RHA to catalyze transactivating response (TAR)–mediated type 1 human immunodeficiency virus (HIV-1) gene regulation. Consequently, HIV-1 virions packaged in cells also expressing the decoy RHA peptides subsequently had enhanced infectivity. The data demonstrate interplay between key components of dsRNA metabolism, both connecting RHA to an important component of innate immunity and delineating an unanticipated role for PKR in RNA metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)- specific CD8þ T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor a2 (IL-13Ra2), which can ‘‘transiently’’ block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Ra2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8þ Tcells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8þ T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer’s patch (PP). Data revealed that intranasal delivery of these IL-13Ra2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8þ Tcells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc is an essential trace element required for enzyme catalysis, gene regulation and signal transduction. Zinc absorption takes place in the small intestine, however, the mechanisms by which cells accumulate zinc are not entirely clear. Zip1 (SLC39A1) is a predicted transmembrane protein that is postulated, but not conclusively proven to mediate zinc influx in gut cells. The aim of this study was to investigate a role for hZip1 in mediating zinc uptake in human enterocytes. Both hZip1 mRNA and protein were detected in human intestinal tissue. In non-differentiated Caco-2 human gut cells, hZip1 was partially localised to the endoplasmic reticulum. In contrast, in differentiated Caco-2 cells cultured in extracellular matrix, the hZip1 protein was located in proximity to the apical microvilli. Lack of surface antibody binding and internalisation indicated that hZip1 was not present on the plasma membrane. Functional studies to establish a role for hZip1 in cellular zinc accumulation were carried out using 65Zn. In Caco-2 cells harbouring an hZip1 overexpression construct, cellular zinc accumulation was enhanced relative to the control. Conversely, Caco-2 cells with an hZip1 siRNA construct showed reduced zinc accumulation. In summary, we show that the Caco-2 cell differentiation endorses targeting of hZip1 to a region near the apical domain. Given the absence of hZip1 at the apical plasma membrane, we propose that hZip1 may act as an intracellular sensor to regulate zinc homoeostasis in human gut cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.
Results
We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.
Conclusion
This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examines the relationship between the magnitude of the relative slow component (SC) of pulmonary oxygen uptake VO[sub 2], citrate synthase activity, UCP2 and UCP3 mRNA levels and muscle fiber composition in both endurance-trained and recreationally active subjects. Magnitude of the relative SC of the Tr group; Indicators of aerobic fitness; High negative correlations between the magnitude of the relative SC and citrate synthase activity and VO[sub 2] peak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscles contain several subtypes of myofibers that differ in contractile and metabolic properties. Transcriptional control of fiber-type specification and adaptation has been intensively investigated over the past several decades. Recently, microRNA (miRNA)-mediated posttranscriptional gene regulation has attracted increasing attention. MiR-23a targets key molecules regulating contractile and metabolic properties of skeletal muscle, such as myosin heavy-chains and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α). In the present study, we analyzed the skeletal muscle phenotype of miR-23a transgenic (miR-23a Tg) mice to explore whether forced expression of miR-23a affects markers of mitochondrial content, muscle fiber composition, and muscle adaptations induced by 4 weeks of voluntary wheel running. When compared with wild-type mice, protein markers of mitochondrial content, including PGC-1α, and cytochrome c oxidase complex IV (COX IV), were significantly decreased in the slow soleus muscle, but not the fast plantaris muscle of miR-23a Tg mice. There was a decrease in type IId/x fibers only in the soleus muscle of the Tg mice. Following 4 weeks of voluntary wheel running, there was no difference in the endurance exercise capacity as well as in several muscle adaptive responses including an increase in muscle mass, capillary density, or the protein content of myosin heavy-chain IIa, PGC-1α, COX IV, and cytochrome c. These results show that miR-23a targets PGC-1α and regulates basal metabolic properties of slow but not fast twitch muscles. Elevated levels of miR-23a did not impact on whole body endurance capacity or exercise-induced muscle adaptations in the fast plantaris muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscles contain several subtypes of myofibers that differ in contractile and metabolic properties. Transcriptional control of fiber-type specification and adaptation has been intensively investigated over the past several decades. Recently, microRNA (miRNA)-mediated posttranscriptional gene regulation has attracted increasing attention. MiR-23a targets key molecules regulating contractile and metabolic properties of skeletal muscle, such as myosin heavy-chains and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α). In the present study, we analyzed the skeletal muscle phenotype of miR-23a transgenic (miR-23a Tg) mice to explore whether forced expression of miR-23a affects markers of mitochondrial content, muscle fiber composition, and muscle adaptations induced by 4 weeks of voluntary wheel running. When compared with wild-type mice, protein markers of mitochondrial content, including PGC-1α, and cytochrome c oxidase complex IV (COX IV), were significantly decreased in the slow soleus muscle, but not the fast plantaris muscle of miR-23a Tg mice. There was a decrease in type IId/x fibers only in the soleus muscle of the Tg mice. Following 4 weeks of voluntary wheel running, there was no difference in the endurance exercise capacity as well as in several muscle adaptive responses including an increase in muscle mass, capillary density, or the protein content of myosin heavy-chain IIa, PGC-1α, COX IV, and cytochrome c. These results show that miR-23a targets PGC-1α and regulates basal metabolic properties of slow but not fast twitch muscles. Elevated levels of miR-23a did not impact on whole body endurance capacity or exercise-induced muscle adaptations in the fast plantaris muscle.