5 resultados para Cell maturation

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation identified and characterised a key genetic regulator called Stat5 using zebrafish. Up-regulation of Stat5 led to an increase in blood cells, indicative of pre-leukaemia, whilst down-regulation decreased these cells and caused other defects. This work shows that Stat5 is critical in blood cell maturation and early embryonic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The miR-17∼92. or oncomiR-1, cluster encodes oncogenic microRNAs (miRNAs), and it also promotes retinoblastoma (RB) tumor formation. Antagomir and miRNA mimics based approaches are widely tried against oncogenic and tumor suppressive miRNAs. Other methods for targeting cancer related miRNAs are still under development. In the current study, we focused on the pri-miRNA-17∼92 aptamer (pri-apt), which can potentially replace the mix of five antagomirs by one aptamer that function to abrogate the maturation of miR-17, miR-18a, and miR-19b (P<0.05) for targeting RB. We used RB cell lines WERI-Rb1 and Y79 as an in vitro model. Cellular changes upon transfecting the pri-apt led to S-phase arrest in WERI-Rb1 cells and onset of apoptosis in both Y79 and WERI-Rb1 cell lines. There was increased cytotoxicity as measured by lactate dehydrogenase activity in pri-apt treated Y79 cells (P<0.05), and significant inhibition of cell proliferation was observed in both of the cell lines. Thus we showed the antiproliferative property of pri-apt in RB cell lines, which can be readily modified by developing appropriate vectors for the delivery of the aptamer specifically to cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the 'lynchpin' for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection.