9 resultados para 730107 Inherited diseases (incl. gene therapy)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis helps to unravel the function of T lymphoma invasion and metastasis protein (TIAM1) and nucleolin, a nucleolar protein in retinoblastoma tumorigenesis. Aptamer based targeted imaging; drug and gene delivery to retinoblastoma and epithelial cancer cells was attained. The work work finally opened up avenues for cancer stem cell targeting using aptamers, imaging of cancer cells using novel bio-orthogonal agent and use of aptamer for blocking the miRNA-17-92 cluster maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of novel therapies is essential to lower the burden of complex diseases. The purpose of this study is to identify novel therapeutics for complex diseases using bioinformatic methods. Bioinformatic tools such as candidate gene prediction tools allow identification of disease genes by identifying the potential candidate genes linked to genetic markers of the disease. Candidate gene prediction tools can only identify candidates for further research, and do not identify disease genes directly. Integration of drug-target datasets with candidate gene data-sets can identify novel potential therapeutics suitable for repositioning in clinical trials. Drug repositioning can save valuable time and money spent in therapeutic development of complex diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium Iodide Symporter (NIS), a therapeutic gene, was studied for the first time in retinoblastoma (RB) correlating the expression with clinicopathological invasiveness of the tumor. The specificity of EpCAM based NIS gene therapy was demonstrated in breast cancer cell as a proof of concept model via 1) EpCAM as tissue specific promoter and 2) nanoformulation, both of which showed encouraging outcomes. In addition, for the first time the upregulated expression of splice variants of survivin, Bax and Bcl-2 in RB tumors was explored indicating their possible role in tumor progression through apoptosis dysregulation. Thus, the above study achieved a profound knowledge about NIS and apoptotic genes in extrathyroidal tumors.