104 resultados para Exercise


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87 ± 0.24 and 1.02 ± 0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six endurance-trained men [peak oxygen uptake (VO2) = 4.58 ± 0.50 (SE) l/min] completed 60 min of exercise at a workload requiring 68 ± 2% peak VO2 in an environmental chamber maintained at 35°C (<50% relative humidity) on two occasions, separated by at least 1 wk. Subjects ingested either a 6% glucose solution containing 1 µCi [3-3H]glucose/g glucose (CHO trial) or a sweet placebo (Con trial) during the trials. Rates of hepatic glucose production [HGP = glucose rate of appearance (Ra) in Con trial] and glucose disappearance (Rd), were measured using a primed, continuous infusion of [6,6-2H]glucose, corrected for gut-derived glucose (gut Ra) in the CHO trial. No differences in heart rate, VO2, respiratory exchange ratio, or rectal temperature were observed between trials. Plasma glucose concentrations were similar at rest but increased (P < 0.05) to a greater extent in the CHO trial compared with the Con trial. This was due to the absorption of ingested glucose in the CHO trial, because gut Ra after 30 and 50 min (16 ± 5 µmol · kg-1 · min-1) was higher (P < 0.05) compared with rest, whereas HGP during exercise was not different between trials. Glucose Rd was higher (P < 0.05) in the CHO trial after 30 and 50 min (48.0 ± 6.3 vs 34.6 ± 3.8 µmol · kg-1 · min-1, CHO vs. Con, respectively). These results indicate that ingestion of carbohydrate, at a rate of ~1.0 g/min, increases glucose Rd but does not blunt the rise in HGP during exercise in the heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has never been, and will never be, a randomized double-blind placebo-controlled trial demonstrating that exercise in youth, adulthood or old age reduces fragility or osteoporosis-related fractures in old age. The next level of evidence, a randomized, controlled but unblinded study with fractures as an end-point is feasible but has never been done. The basis for the belief that exercise reduces fractures is derived from lower levels of ‘evidence’, namely, retrospective and prospective observation cohort studies and case–control studies. These studies are at best hypothesis generating, never hypothesis testing. They are all subject to many systematic biases and should be interpreted with extreme scepticism. Surrogate measures of anti-fracture efficacy are the next level of evidence, such as the demonstration of a reduction in risk factors for falls, a reduction in falls, a reduction in fractures due to falls, an increase in peak bone size and mass, prevention of bone loss in midlife and restoration of bone mass and structure in old age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of glycerol ingestion on fluid homeostasis, thermoregulation, and metabolism during rest and exercise. Six endurance-trained men ingested either 1 g glycerol in 20 ml H2O.kg-1 body weight (bw) (GLY) or 20 ml H2O.kg-1bw (CON) in a randomized double-blind fashion, 120 min prior to undertaking 90 min of steady state cycle exercise (SS) at 98 % of lactate threshold in dry heat (35 degrees C, 30 % RH), with ingestion of CHO-electrolyte beverage (6 % CHO) at 15-min intervals. A 15-min cycle, where performance was quantified in kJ, followed (PC). Pre-exercise urine volume was lower in GLY than CON (1119 ± 97 vs. 1503 ± 146 ml· 120 min-1; p < .05). Heart rate was lower (p < .05) throughout SS in GLY, while forearm blood flow was higher (17.1 ± 1.5 vs. 13.7 ± 3.0 ml.100 g tissue·min-1; p < .05) and rectal  temperature lower (38.7 ± 0.1 vs. 39.1 ± 0.1 ° C; p < .05) in GLY late in SS. Despite these changes, skin and muscle temperatures and circulating catecholamines were not different between trials. Accordingly, no differences were observed in muscle glycogenolysis, lactate accumulation, adenine nucleotide, and phosphocreatine degradation or inosine 5'-monophosphate accumulation when comparing GLY with CON. Of note, the work performed during PC was 5 % greater in GLY (252 ± 10 vs. 240 ± 9 kJ; p < .05). These results demonstrate that glycerol, when ingested with a bolus of water 2 hours prior to exercise, results in fluid retention, which is capable of reducing cardiovascular strain and enhancing thermoregulation. Furthermore, this practice increases exercise performance in the heat by mechanisms other than alterations in muscle metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of reduced acetylcarnitine availability on oxidative metabolism during the transition from rest to steady-state exercise. Eight male subjects completed two randomised exercise trials at 68 % of the peak rate of O2 uptake (V̇O2,peak). On one occasion subjects ingested 1 g (kg body mass)−1 glucose 75 min prior to exercise (CHO), whereas the other trial acted as a control (CON). Muscle samples were obtained pre- and 75 min post-ingestion, and following 1 and 10 min of exercise. Plasma glucose and insulin were elevated (P < 0.05), and plasma free fatty acids (FFA) were lower at the onset of exercise in CHO. Acetylcarnitine (CON, 4.8 ± 1.8; CHO, 1.5 ± 0.9 mmol (kg dry mass (d.m.))−1, P < 0.05) and acetyl CoA (CON, 13.2 ± 2.3; CHO, 6.3 ± 0.6 μmol (kg d.m.)−1, P < 0.05) were lower at rest, whereas pyruvate dehydrogenase activation (PDHa) was greater in CHO compared with CON (CON, 0.78 ± 0.07; CHO, 1.44 ± 0.19 mmol min−1 (kg wet mass (w.m.))−1). Respiratory exchange ratio (RER) was significantly elevated during exercise in CHO. The acetyl groups increased at similar rates at the onset of exercise (1 min) and there was no difference in substrate phosphorylation as determined from lactate accumulation and phosphocreatine degradation between trials. Subsequently, oxidative metabolism during the transition from rest to steady-state exercise was not affected by prior carbohydrate ingestion. Although exercise resulted in the rapid activation of PDH in both trials, PDHa was greater at 1 min in CHO (CON, 2.36 ± 0.22; CHO, 2.91 ± 0.18 mmol min−1 (kg w.m.)−1). No differences in muscle metabolite levels and PDHa were observed after 10 min of moderate exercise between trials. In summary, at rest, carbohydrate ingestion induced multiple metabolic changes which included decreased acetylcarnitine availability and small increases in PDHa. The prior changes in PDHa and acetylcarnitine availability had no effect on substrate phosphorylation and oxidative metabolism at the onset of exercise. These data suggest that acetylcarnitine availability is unlikely to be the site of metabolic inertia during the transition from rest to steady-state moderate intensity exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Five days of a high-fat diet produce metabolic adaptations that increase the rate of fat oxidation during prolonged exercise. We investigated whether enhanced rates of fat oxidation during submaximal exercise after 5 d of a high-fat diet would persist in the face of increased carbohydrate (CHO) availability before and during exercise.


Methods: Eight well-trained subjects consumed either a high-CHO (9.3 g·kg-1·d-1 CHO, 1.1 g·kg-1·d-1 fat; HCHO) or an isoenergetic high-fat diet (2.5 g·kg-1·d-1 CHO, 4.3 g·kg-1·d-1 fat; FAT-adapt) for 5 d followed by a high-CHO diet and rest on day 6. On day 7, performance testing (2 h steady-state (SS) cycling at 70% peak O2 uptake [[latin capital V with dot above]O2peak] + time trial [TT]) of 7 kJ·kg-1) was undertaken after a CHO breakfast (CHO 2 g·kg-1) and intake of CHO during cycling (0.8 g·kg-1·h-1).


Results: FAT-adapt reduced respiratory exchange ratio (RER) values before and during cycling at 70% [latin capital V with dot above]O2peak; RER was restored by 1 d CHO and CHO intake during cycling (0.90 ± 0.01, 0.80 ± 0.01, 0.91 ± 0.01, for days 1, 6, and 7, respectively). RER values were higher with HCHO (0.90 ± 0.01, 0.88 ± 0.01 (HCHO > FAT-adapt, P < 0.05), 0.95 ± 0.01 (HCHO > FAT-adapt, P < 0.05)). On day 7, fat oxidation remained elevated (73 ± 4 g vs 45 ± 3 g, P < 0.05), whereas CHO oxidation was reduced (354 ± 11 g vs 419 ± 13 g, P < 0.05) throughout SS in FAT-adapt versus HCHO. TT performance was similar for both trials (25.53 ± 0.67 min vs 25.45 ± 0.96 min, NS).


Conclusion: Adaptations to a short-term high-fat diet persisted in the face of high CHO availability before and during exercise, but failed to confer a performance advantage during a TT lasting ~ 25 min undertaken after 2 h of submaximal cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine endurance-trained men exercised on a cycle ergometer at ~68% peak O2 uptake to the point of volitional fatigue [232 ± 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (Ra) increased throughout exercise, reaching its peak value of 118 ± 7 µmol · kg-1 · min-1 at fatigue, whereas gut Ra increased continuously during exercise, peaking at 105 ± 10 µmol · kg-1 · min-1 at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (Rd) increased throughout exercise, reaching a peak value of 118 ± 7 µmol · kg-1 · min-1 at fatigue. If we assume 95% oxidation of glucose Rd, estimated exogenous glucose oxidation at fatigue was 1.36 ± 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the interaction of exercise and diet on glucose transporter (GLUT-4) protein and mRNA expression in type I (soleus) and type II [extensor digitorum longus (EDL)] skeletal muscle. Forty-eight Sprague Dawley rats were randomly assigned to one of two dietary conditions: high-fat (FAT, n =24) or high-carbohydrate (CHO, n =24). Animals in each dietary condition were allocated to one of two groups: control (NT, n =8) or a group that performed 8 weeks of treadmill running (4 sessions week<sup>–1</sup> of 1000 m @ 28 m min<sup>–1</sup> , RUN, n =16). Eight trained rats were killed after their final exercise bout for determination of GLUT-4 protein and mRNA expression: the remainder were killed 48 h after their last session for measurement of muscle glycogen and triacylglycerol concentration. GLUT-4 protein expression in NT rats was similar in both muscles after 8 weeks of either diet. However, there was a main effect of training such that GLUT-4 protein was increased in the soleus of rats fed with either diet (P < 0.05) and in the EDL in animals fed with CHO (P < 0.05). There was a significant diet–training interaction on GLUT-4 mRNA, such that expression was increased in both the soleus (100% ↑P < 0.05) and EDL (142% ↑P < 0.01) in CHO-fed animals. Trained rats fed with FAT decreased mRNA expression in the EDL (↓ 45%, P < 0.05) but not the soleus (↓ 14%, NS). We conclude that exercise training in CHO-fed rats increased both GLUT-4 protein and mRNA expression in type I and type II skeletal muscle. Despite lower GLUT-4 mRNA in muscles from fat-fed animals, exercise-induced increases in GLUT-4 protein were largely preserved, suggesting that control of GLUT-4 protein and gene expression are modified independently by exercise and diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of exercise intensity on skeletal muscle AMP-activated protein kinase (AMPK) signaling and substrate metabolism was examined in eight men cycling for 20 min at each of three sequential intensities: low (40 ± 2% Vo2 peak), medium (59 ± 1% Vo2 peak), and high (79 ± 1% Vo2 peak). Muscle free AMP/ATP ratio only increased at the two higher exercise intensities (P < 0.05). AMPK a1 (1.5-fold) and AMPK a2 (5-fold) activities increased from low to medium intensity, with AMPK a2 activity increasing further from medium to high intensity. The upstream AMPK kinase activity was substantial at rest and only increased 50% with exercise, indicating that, initially, signaling through AMPK did not require AMPK kinase posttranslational modification. Acetyl-CoA carboxylase (ACC)-ßphosphorylation was sensitive to exercise, increasing threefold from rest to low intensity, whereas neuronal NO synthase (nNOS)µphosphorylation was only observed at the higher exercise intensities. Glucose disappearance (tracer) did not increase from rest to low intensity, but increased sequentially from low to medium to high intensity. Calculated fat oxidation increased from rest to low intensity in parallel with ACCß phosphorylation, then declined during high intensity. These results indicate that ACCß phosphorylation is especially sensitive to exercise and tightly coupled to AMPK signaling and that AMPK activation does not depend on AMPK kinase activation during exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterization of expression of, and consequently also the acute exercise effects on, Na+,K+-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at 40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na+,K+-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±S.E.M.) immediately increased 3 and ß2 mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst 1 and 2 mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for ß1 and ß3 mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for 1, 2, 3, ß1, ß2 and ß3 isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the 1–3 and ß1–ß3 isoforms. Thus, human skeletal muscle expresses each of the Na+,K+-ATPase 1, 2, 3, ß1, ß2 and ß3 isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na+,K+-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na+,K+-ATPase up-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (~75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on ß-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ß2-microglobulin (ß2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ~65% of O2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined ß2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). ß-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, ß2M was not altered at any time point postexercise. We conclude that ß2M and ß-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas ß2M and GAPDH are the most stably expressed following END exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Creatine (Cr) supplementation has been shown to attenuate increases in plasma ammonia and hypoxanthine during intense endurance exercise lasting 1 h, suggesting that Cr supplementation may improve muscle energy balance (matching of ATP resynthesis to ATP demand) during such exercise. We hypothesized that Cr supplementation would improve muscle energy balance (as assessed by muscle inosine monophosphate (IMP) accumulation) during intense endurance exercise.

Methods: Seven well-trained men completed two experimental trials involving approximately 1 h of intense endurance exercise (cycling 45 min at 78 ± 1% V̇O2peak followed by completion of 251 ± 6 kJ as quickly as possible (performance ride)). Subjects ingested approximately 42 g·d-1 dextrose for 5 d before the first experimental trial (CON), then approximately 21 g Cr monohydrate plus approximately 21 g·d-1 dextrose for 5 d before the second experimental trial (CREAT). Trials were ordered because of the long washout time for Cr. Subjects were blinded to the order of the trials.

Results: Creatine supplementation significantly (P < 0.05) increased muscle total Cr (resting values: CREAT: 138.1 ± 7.9; CON: 117.7 ± 6.5 mmol·kg-1 dm). No difference was seen between treatments in any measured muscle or blood metabolite after the first 45 min of exercise. Despite the performance ride completion time being similar in the two treatments (∼13.5 min, ∼86% V̇O2peak), IMP at the end of the performance ride was significantly (P < 0.05) lower in CREAT than in CON (CREAT: 1.2 ± 0.6; CON: 2.0 ± 0.7 mmol·kg-1 dm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of allopurinol on urinary purine loss was examined in 7 active male subjects (age 24.9 ± 3.0 years, weight 82.8 ± 8.3 kg, V˙o2peak 48.1 ± 6.9 mL · kg−1 · min−1). These subjects performed, in random order, a trial with 5 days of prior ingestion of a placebo or allopurinol. Each trial consisted of eight 10-second sprints on an air-braked cycle ergometer and was separated by at least a week. A rest period of 50 seconds separated each repeated sprint. Forearm venous plasma inosine, hypoxanthine (Hx) and uric acid concentrations were measured at rest and during 120 minutes of recovery from exercise. Urinary inosine, Hx, xanthine, and uric acid excretion were also measured before and for 24 hours after exercise. During the first 120 minutes of recovery, plasma Hx concentrations, as well as the urinary Hx and xanthine excretion rates, were higher (P < .05) with allopurinol compared with the placebo trial. In contrast, plasma uric acid concentration and urinary uric acid excretion rates were lower (P < .05) with allopurinol. The total urinary excretion of purines (inosine + Hx + xanthine + uric acid) above basal levels was higher in the allopurinol trial compared with placebo. These results indicate that the total urinary purine excretion after intermittent sprint exercise was enhanced with allopurinol treatment. Furthermore, the composition of urinary purines was markedly affected by this drug.