60 resultados para Lipase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Lipases have applications for the industrial processing of lipids, including concentrating and/or modifying fish oil derived omega-3 fatty acids, widely used as nutritional supplement and functional food ingredients. A range of para-nitrophenol (pNP) acyl esters were synthesised as a means to rapidly screen lipases for fatty acid selectivity using spectrophotometric detection. The chosen esters were based primarily on the most abundant fatty acids present in anchovy and tuna oils. pNP derivatives of C16:1 n-7, C18:1 n-9 (OA), C18:2 n-6 (LA), C18:3 n-3 (ALA), C20:5 n-3 (EPA) and C22:6 n-3 (DHA) were synthesised. Storage stability of these pNP derivatives was shown to be at least 6 months and all pNP derivatives, including those of EPA and DHA, were shown to be stable throughout the conditions of the assay. We applied the new assay substrates for the determination of fatty acid selectivity of five widely utilised lipases. Results showed that the lipase from Candida rugosa was the most selective in terms of omega-3 specificity, preferentially hydrolysing all other medium– long chain substrates. Lipases from Rhizomucor miehei and Thermomyces lanuginosa also showed selectivity, with a significant preference for saturated fatty acids. Candida Antarctica lipase B and Aspergillus niger lipase were the least selective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focused on the use of enzyme "lipase" rather than chemicals to produce concentrates of omega-3 fatty acids. These enzymatic techniques are cheaper, greener and environmentally friendly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partial hydrolysis of emu oil was performed using Thermomyces lanuginosus lipase to remove some shorter chain fatty acids. Then eicosapentaenoic acid (EPA) was incorporated into the modified emu oil using either Lipozyme RMIM or Lipozyme TLIM to produce new EPA enriched structured lipids. Using Isooctane as a reaction solvent increased the level of EPA incorporation, which was higher with RMIM than with TLIM. TLIM incorporated EPA almost exclusively into the sn-1,3 positions, whereas RMIM incorporated EPA at sn-1,3 and sn-2 positions in an almost statistical ratio. Both structured lipids were less oxidatively stable than emu oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine microalgae present a renewable alternative source for sustainable production of omega-3 fatty acids, as compared to conventional sources such as krill oil and fish oil. In this study, we optimised a method for lipid extraction from marine thraustochytrids using a bead mill and enzymatic concentration of omega-3 fatty acids from the thraustochytrid oil. The optimised lipid extraction conditions were, bead size 0.4-0.6μm, 4500rpm, 4min of processing time at 5g biomass concentration. The maximum lipid yield (% dry weight basis) achieved at optimum conditions were 40.5% for Schizochytrium sp. S31 (ATCC) and 49.4% for Schizochytrium sp. DT3 (in-house isolate). DT3 oil contained 39.8% docosahexaenoic acid (DHA) as a percentage of lipid, a higher DHA percentage than S31. Partial hydrolysis of DT3 oil using Candida rugosa lipase was performed to enrich omega-3 polyunsaturated fatty acids (PUFAs) in the glyceride portion. Total omega-3 fatty acid content was increased to 88.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids (ILs) are solvents with numerous properties, which have been recently used for enzyme catalysis. In this work, five different ILs based on primary, tertiary, and quaternary ammonium cations coupled with mesylate and propionate anions were used as media for hydrolysis by the industrially relevant enzyme Thermomyces lanuginosus lipase (TLL). We correlated the TLL activity with various key IL and IL-water properties, including ion concentration, water activity (aw), kosmotropicity, hydrogen-bond basicity (β), and pH. The ion concentration was associated with aw, and the molar ratio of water/IL 5:1 (aw≈0.6) was found to be the threshold for assured TLL activity. Triethylammonium mesylate was the best IL owing to its kosmotropicity and ideal intrinsic β. The pH of IL-water mixtures is a key parameter related to the conformational change of TLL. We demonstrated the pH effect of the IL-water mixtures can be overcome by buffering, and the buffered system displayed the greatest activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research using 1,8-naphthalimide derivatives has expanded rapidly in recent years owing to their cell-permeable nature, ability to target certain cellular locations and fluorescent properties. Here we describe the synthesis of three new esters of 4-hydroxy-N-propyl-1,8-naphthalimide (NAP) and the development of a simple and sensitive assay protocol to measure the activity of carboxylester hydrolases. The NAP fluorophore was esterified with short (butyrate), medium (octanoate) and long (palmitate) chain fatty acids. The esters were spectroscopically characterised and their properties investigated for their suitability as assay substrates. The esters were found to be relatively stable under the conditions of the assay and levels of spontaneous hydrolysis were negligible. Non-specific hydrolysis by proteins such as bovine serum albumin was also minimal. A simple and rapid assay methodology was developed and used to analyse a range of commercially available enzymes that included enzymes defined as lipases, esterases and phospholipases. Clear differences were observed between the enzyme classes with respect to the hydrolysis of the various chain length esters, with lipases preferentially hydrolysing the medium chain ester, whereas esterases reacted more favourably with the short ester. The assay was found to be highly sensitive with the fluorophore detectable to the low nM range. These esters provide alternate substrates from established coumarin-based fluorophores, possessing distinctly different excitation (447 nm) and emission (555 nm) optima. Absorbing at 440-450 nm also offers the flexibility of analysis by UV-visible spectrophotometry. This represents the first instance of a naphthalimide-derived compound being used to analyse these enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipases, which can be immobilized and reused for many reaction cycles, are important enzymes with many industrial applications. A key challenge in lipase immobilization for catalysis is to open the lipase lid and maintain it in an open conformation in order to expose its active site. Here we have designed "tailor-made" graphene-based nanosupports for effective lipase (QLM) immobilization through molecular engineering, which is in general a grand challenge to control biophysicochemical interactions at the nano-bio interface. It was observed that increasing hydrophobic surface increased lipase activity due to opening of the helical lid present on lipase. The molecular mechanism of lid opening revealed in molecular dynamics simulations highlights the role of hydrophobic interactions at the interface. We demonstrated that the open and active form of lipase can be achieved and tuned with an optimized activity through chemical reduction of graphene oxide. This research is a major step toward designing nanomaterials as a platform for enhancing enzyme immobilization/activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary fatty acids regulate the abundance and activity of various proteins involved in the regulation of fat oxidation by functioning as regulators of gene transcription. To determine whether the transcription of key lipid metabolic proteins necessary for fat metabolism within human skeletal muscle are regulated by acute elevations in circulating free fatty acid (FFA) concentrations, 7 healthy men underwent 3 randomized resting infusions of Intralipid (20%) with heparin sodium, saline and heparin sodium, or saline only for 5 hours. These infusions significantly elevated plasma FFA concentrations by 15-fold (to 1.67 ± 0.13 mmol/L) in the Intralipid infusion trial, with modest elevations observed in the saline and heparin sodium and saline alone infusion groups (0.67 ± 0.09 and 0.49 ± 0.087 mmol/L, P < .01 both vs Intralipid infusion). Analysis of messenger RNA (mRNA) concentration demonstrated that pyruvate dehydrogenase kinase isoform 4 (PDK4) mRNA, a key negative regulator of glucose oxidation, was increased in all trials with a 24-fold response after Intralipid infusion, 15-fold after saline and heparin infusion, and 9-fold after saline alone. The PDK4 increases were not significantly different between the 3 trials. The mRNA concentration of the major uncoupling protein within skeletal muscle, uncoupling protein 3, was not elevated in parallel to the increased plasma FFA as similar (not, vert, similar2-fold) increases were evident in all trials. Additional genes involved in lipid transport (fatty acid translocase/CD36), oxidation (carnitine palmitoyltransferase I), and metabolism (1-acylglycerol-3-phosphate O-acyltransferase 1, hormone-sensitive lipase, and peroxisomal proliferator-activated receptor-γ coactivator-1α) were not altered by increased circulating FFA concentrations. The present data demonstrate that of the genes analyzed that encode proteins that are key regulators of lipid homeostasis within skeletal muscle, only the PDK4 gene is uniquely sensitive to increasing FFA concentrations after increased plasma FFA achieved by intravenous lipid infusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field-scale remediation of oil-contaminated soils from the Liaohe Oil Fields in China was examined using composting biopiles in windrow technology. Micronutrient-enriched chicken excrement and rice husk were applied as nutrition and a bulking agent. The lipase activities of indigenous micro-organisms were analyzed, and three indigenous fungi with high lipase activities was identified. An inoculum consisting of the three indigenous fungi and one introduced (exotic) fungus was applied to four different types of oil-contaminated soils. The results showed that the inoculum of indigenous fungi increased both the total colony-forming units (TCFU) and increased the rate of degradation of total petroleum hydrocarbons (TPH) in all contaminated soils but at different rates. In sharp contrast to other studies, the introduction of exotic micro-organisms did not improve the remediation, and suggests that inoculation of oil-contaminated sites with nonindigenous species is likely to fail. On the other hand, indigenous genera of microbes were found to be very effective in increasing the rate of degradation of TPH. The degradation of TPH was mainly controlled by the compositions of aromatic hydrocarbons and asphaltene and resin. Between 38 to 57% degradation of crude oils (with densities ranging from 25,800 to 77,200 mg/kg dry weight) in contaminated soils was achieved after 53 days of operation. The degradation patterns followed typical first-order reactions. We demonstrate that the construction and operation of field-scale composting biopiles in windrows with passive aeration is a cost-effective bioremediation technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixteen female cross-bred (Large White × Landrace) pigs (initial weight 65 kg) with venous catheters were randomly allocated to four treatment groups in a 2×2 factorial design. The respective factors were dietary fat (25 or 100 g/kg) and dietary conjugated linoleic acid (CLA; 0 or 10 g CLA-55/kg). Pigs were fed every 3 h (close to ad libitum digestible energy intake) for 8 d and were bled frequently. Plasma glucose and non-esterified fatty acid (NEFA) responses to insulin and adrenaline challenges were determined on day 8. Plasma concentrations of NEFA were significantly increased (10·5 and 5·4 % for low- and high-fat diets respectively, P=0·015) throughout the experiment, suggesting that there was a possible increase in fat mobilisation. The increase in lipolysis, an indicator of ß-adrenergic stimulated lipolysis, was also evident in the NEFA response to adrenaline. However, the increase in plasma triacylglycerol (11·0 and 7·1 % for low- and high-fat diets respectively, P=0·008) indicated that CLA could have reduced fat accretion via decreased adipose tissue triacylglycerol synthesis from preformed fatty acids, possibly through reduced lipoprotein lipase activity. Plasma glucose, the primary substrate for de novo lipid synthesis, and plasma insulin levels were unaffected by dietary CLA suggesting that de novo lipid synthesis was largely unaffected (P=0·24 and P=0·30 respectively). In addition, the dietary CLA had no effect upon the ability of insulin to stimulate glucose removal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL), an important regulatory enzyme for triacylglycerol hydrolysis within skeletal muscle, is controlled by β-adrenergic signaling as well as intrinsic factors related to contraction and energy turnover. In the current study, we tested the capacity of 5′AMP-activated protein kinase (AMPK) to suppress β-adrenergic stimulation of HSL activity. Eight male subjects completed 60 min of cycle exercise at 70% VO2 peak on two occasions: either with normal (CON) or low (LG) pre-exercise muscle glycogen content, which is known to enhance exercise-induced AMPK activity. Muscle samples were obtained before and immediately after exercise. Pre-exercise glycogen averaged 375 ± 35 and 163 ± 27 mmol·kg–1 dm for CON and LG, respectively. AMPK α-2 was not different between trials at rest and was increased (3.7-fold, P<0.05) by exercise during LG only. HSL activity did not differ between trials at rest and increased (0 min: 1.67 ± 0.13; 60 min: 2.60 ± 0.26 mmol·min–1·kg–1 dm) in CON. The exercise-induced increase in HSL activity was attenuated by AMPK α-2 activation in LG. The attenuated HSL activity during LG occurred despite higher plasma epinephrine levels (60 min: CON, 1.96 ± 0.29 vs LG, 4.25 ± 0.60 nM, P<0.05) compared with CON. Despite the attenuated HSL activity in LG, IMTG was decreased by exercise (0 min: 27.1 ± 2.0; 60 min: 22.5 ± 2.0 mmol.kg–1 dm, P<0.05), whereas no net reduction occurred in CON. To confirm the apparent effect of AMPK on HSL activity, we performed experiments in muscle cell culture. The epineprine-induced increase in HSL activity was totally attenuated (P<0.05) by AICAR administration in L6 myotubes. These data provide new evidence indicating that AMPK is a major regulator of skeletal muscle HSL activity that can override β-adrenergic stimulation. However, the increased IMTG degradation in LG suggests factors other than HSL activity are important for IMTG degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in dietary macronutrient intake alter muscle and blood substrate availability and are important for regulating gene expression. However, few studies have examined the effects of diet manipulation on gene expression in human skeletal muscle. The aim of this study was to quantify the extent to which altering substrate availability impacts on subsequent mRNA abundance of a subset of carbohydrate (CHO)- and fat-related genes. Seven subjects consumed either a low- (LOW; 0.7 g/kg body mass CHO) or high- (HIGH; 10 g/kg body mass CHO) CHO diet for 48 h after performing an exhaustive exercise bout to deplete muscle glycogen stores. After intervention, resting muscle and blood samples were taken. Muscle was analyzed for the gene abundances of GLUT4, glycogenin, pyruvate dehydrogenase kinase-4 (PDK-4), fatty acid translocase (FAT/CD36), carnitine palmitoyltransferase I (CPT I), hormone-sensitive lipase (HSL), β-hydroxyacyl-CoA dehydrogenase (΄β-HAD), and uncoupling binding protein-3 (UCP3), and blood samples for glucose, insulin, and free fatty acid (FFA) concentrations. Glycogen-depleting exercise and HIGH-CHO resulted in a 300% increase in muscle glycogen content (P < 0.001) relative to the LOW-CHO condition. FFA concentrations were twofold higher after LOW- vs. HIGH-CHO (P < 0.05). The exercise-diet manipulation exerted a significant effect on transcription of all carbohydrate-related genes, with an increase in GLUT4 and glycogenin mRNA abundance and a reduction in PDK-4 transcription after HIGH-CHO (all P < 0.05). FAT/CD36 (P < 0.05) and UCP3 (P < 0.01) gene transcriptions were increased following LOW-CHO. We conclude that 1) there was a rapid capacity for a short-term exercise and diet intervention to exert coordinated changes in the mRNA transcription of metabolic related genes, and 2) genes involved in glucose regulation are increased following a high-carbohydrate diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ~80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.