41 resultados para Genes, Mating Type, Fungal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serine repeat antigens (SERAs) are a family of secreted “cysteine-like” proteases of Plasmodium parasites. Several SERAs possess an atypical active-site serine residue in place of the canonical cysteine. The human malaria parasite Plasmodium falciparum possesses six “serine-type” (SERA1 to SERA5 and SERA9) and three “cysteine-type” (SERA6 to SERA8) SERAs. Here, we investigate the importance of the serine-type SERAs to blood-stage parasite development and examine the extent of functional redundancy among this group. We attempted to knock out the four P. falciparum serine-type SERA genes that have not been disrupted previously. SERA1, SERA4, and SERA9 knockout lines were generated, while only SERA5, the most strongly expressed member of the SERA family, remained refractory to genetic deletion. Interestingly, we discovered that while SERA4-null parasites completed the blood-stage cycle normally, they exhibited a twofold increase in the level of SERA5 mRNA. The inability to disrupt SERA5 and the apparent compensatory increase in SERA5 expression in response to the deletion of SERA4 provides evidence for an important blood-stage function for the serine-type SERAs and supports the notion of functional redundancy among this group. Such redundancy is consistent with our phylogenetic analysis, which reveals a monophyletic grouping of the serine-type SERAs across the genus Plasmodium and a predominance of postspeciation expansion. While SERA5 is to some extent further validated as a target for vaccine and drug development, our data suggest that the expression level of other serine-type SERAs is the only barrier to escape from anti-SERA5-specific interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To examine whether rosiglitazone alters gene expression of some key genes involved in mitochondrial biogenesis and oxidative capacity in skeletal muscle of type 2 diabetic patients, and whether this is associated with alterations in skeletal muscle oxidative capacity and lipid content.

Design: Skeletal muscle gene expression, mitochondrial protein content, oxidative capacity and lipid accumulation were measured in muscle biopsies obtained from diabetic patients, before and after 8 weeks of rosiglitazone treatment, and matched controls. Furthermore, whole-body insulin sensitivity and substrate utilization were assessed.

Subjects: Ten obese type 2 diabetic patients and 10 obese normoglycemic controls matched for age and BMI.

Methods: Gene expression and mitochondrial protein content of complexes I–V of the respiratory chain were measured by quantitative polymerase chain reaction and Western blotting, respectively. Histochemical staining was used to quantify lipid accumulation and complex II succinate dehydrogenase (SDH) activity. Insulin sensitivity and substrate utilization were measured during a hyperinsulinemic–euglycemic clamp with indirect calorimetry.

Results: Skeletal-muscle mRNA of PGC-1a and PPARb/d – but not of other genes involved in glucose, fat and oxidative metabolism – was significantly lower in diabetic patients (Po0.01). Rosiglitazone significantly increased PGC-1a (B2.2-fold, Po0.01) and PPARb/d (B2.6-fold, Po0.01), in parallel with an increase in insulin sensitivity, SDH activity and metabolic flexibility (Po0.01). Surprisingly, none of the measured mitochondrial proteins was reduced in type 2 diabetic patients, nor affected by rosiglitazone treatment. No alterations were seen in muscular fat accumulation upon treatment.

Conclusion: These results suggest that the insulin-sensitizing effect of rosiglitazone may involve an effect on muscular oxidative capacity, via PGC-1a and PPARb/d, independent of mitochondrial protein content and/or changes in intramyocellular lipid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The natriuretic peptide (NP) family consists of multiple subtypes in teleosts, including atrial, B-type, ventricular, and C-type NPs (ANP, BNP, VNP, CNP-1–4, respectively), but only ANP, BNP, CNP-3, and CNP-4 have been identified in tetrapods. As part of understanding the molecular evolution of NPs in the tetrapod lineage, we identified NP genes in the chicken genome. Previously, only BNP and CNP-3 have been identified in birds, but we characterized two new chicken NP genes by cDNA cloning, synteny and phylogenetic analyses. One gene is an orthologue of CNP-1, which has only ever been reported in teleostei and bichir. The second gene could not be assigned to a particular NP subtype because of high sequence divergence and was named renal NP (RNP) due to its predominant expression in the kidney. CNP-1 mRNA was only detected in brain, while CNP-3 mRNA was expressed in kidney, heart, and brain. In the developing embryo, BNP and RNP transcripts were most abundant 24 h post-fertilization, while CNP mRNA increased in a stage-dependant manner. Synthetic chicken RNP stimulated an increase in cGMP production above basal level in chicken kidney membrane preparations and caused a potent dose-dependant vasodilation of pre-constricted dorsal aortic rings. From conserved chromosomal synteny, we propose that the CNP-4 and ANP genes have been lost in chicken, and that RNP may have evolved from a VNP-like gene. Furthermore, we have demonstrated for the first time that CNP-1 is retained in the tetrapod lineage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (~75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on ß-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ß2-microglobulin (ß2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ~65% of O2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined ß2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). ß-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, ß2M was not altered at any time point postexercise. We conclude that ß2M and ß-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas ß2M and GAPDH are the most stably expressed following END exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncoupling protein homologs UCP2 and UCP3 have been proposed as candidate genes for the regulation of lipid metabolism. Within the context of this hypothesis, we have compared, from fed and fasted rats, changes in gene expression of skeletal muscle UCP2 and UCP3 with those of carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase, two key enzymes regulating lipid flux across the mitochondrial #-oxidation pathway. In addition, changes in gene expression of peroxisome proliferator-activated receptor gamma, a nuclear transcription factor implicated in lipid metabolism, were also investigated. The results indicate that in response to fasting, the mRNA levels of UCP2, UCP3, carnitine palmitoyltransferase I and medium-chain acyl-CoA dehydrogenase are markedly increased, by three- to sevenfold, in the gastrocnemius and tibialis anterior (fast-twitch muscles, predominantly glycolytic or oxidative-glycolytic), but only mildly increased, by less than twofold, in the soleus (slow-twitch muscle, predominantly oxidative). Furthermore, such muscle-type dependency in fasting-induced transcriptional changes in UCP2, UCP3, carnitine palmitoyltransferase and medium-chain acyl-CoA dehydrogenase persists when the increase in circulating levels of free fatty acids during fasting is abolished by the anti-lipolytic agent nicotinic acid - with blunted responses only in the slow-twitch muscle contrasting with unabated increases in fast-twitch muscles. Independently of muscle type, however, the mRNA levels of peroxisome proliferator-activated receptor gamma are not altered during fasting. Taken together, these studies indicate a close association between fasting-induced changes in UCP2 and UCP3 gene expression with those of key regulators of lipid oxidation, and are hence consistent with the hypothesis that these UCP homologs may be involved in the regulation of lipid metabolism. Furthermore, they suggest that in response to fasting, neither the surge of free fatty acids in the circulation nor induction of the peroxisome proliferator-activated receptor gamma gene may be required for the marked upregulation of genes encoding the UCP homologs and key enzymes regulating lipid oxidation in fast-twitch muscles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of polarized immune responses controls resistance and susceptibility to many microorganisms. However, studies of several infectious, allergic, and autoimmune diseases have shown that chronic type-1 and type-2 cytokine responses can also cause significant morbidity and mortality if left unchecked. We used mouse cDNA microarrays to molecularly phenotype the gene expression patterns that characterize two disparate but equally lethal forms of liver pathology that develop in Schistosoma mansoni infected mice polarized for type-1 and type-2 cytokine responses. Hierarchical clustering analysis identified at least three groups of genes associated with a polarized type-2 response and two linked with an extreme type-1 cytokine phenotype. Predictions about liver fibrosis,  apoptosis, and granulocyte recruitment and activation generated by the microarray studies were confirmed later by traditional biological assays. The data show that cDNA microarrays are useful not only for determining  coordinated gene expression profiles but are also highly effective for molecularly “fingerprinting” diseased tissues. Moreover, they illustrate the potential of genome-wide approaches for generating comprehensive views on the molecular and biochemical mechanisms regulating infectious  disease pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Skeletal muscle produces a variety of secreted proteins that have important roles in intercellular communication and affects processes such as glucose homoeostasis. The objective of this study was to develop a novel Signal Sequence Trap (SST) in conjunction with cDNA microarray technology to identify proteins secreted from skeletal muscle of Psammomys obesus that were associated with obesity and type 2 diabetes (T2D).

Design: Secreted proteins that were differentially expressed between lean, normal glucose tolerant (NGT), overweight and impaired glucose tolerant (IGT) and obese, T2D P. obesus were isolated using SST in conjunction with cDNA microarray technology. Subsequent gene expression was measured in tissues from P. obesus by real-time PCR (RT-PCR).

Results: The SST yielded 1600 positive clones, which were screened for differential expression. A total of 91 (B6%) clones were identified by microarray to be differentially expressed between NGT, IGT and T2D P. obesus. These clones were sequenced to identify 51 genes, of which only 27 were previously known to encode secreted proteins. Three candidate genes not previously associated with obesity or type 2 diabetes, sushi domain containing 2, collagen and calcium-binding EGF domains 1 and periostin (Postn), as well as one gene known to be associated, complement component 1, were shown by RT-PCR to be differentially expressed in  skeletal muscle of P. obesus. Further characterization of the secreted protein Postn revealed it to be predominantly expressed in adipose tissue, with higher expression in visceral compared with subcutaneous adipose depots.

Conclusion: SST in conjunction with cDNA microarray technology is a powerful tool to identify differentially expressed secreted proteins involved in complex diseases such as obesity and type 2 diabetes. Furthermore, a number of candidate genes were identified, in particular, Postn, which may have a role in the development of obesity and type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 µM significantly reduced cell viability. After 3 days in 22 µM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 µM relative to 0 µM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 µM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biochemical and molecular processes that maintain the stem cell pool, and govern the proliferation and differentiation of haemopoietic stem/progenitor cells (HSPCs) have been widely investigated but are incompletely understood. The purpose of this study was to identify and characterise novel genes that may play a part in regulating the mechanisms that control the proliferation, differentiation and self-renewal of human HSPCs. Reverse transcription differential display polymerase chain reaction (dd-PCR) was used to identify differences in gene expression between a HSPC population defined by expression of the CD34 phenotype, and the more mature CD34 depleted populations. A total of 6 differentially expressed complementary deoxyribonucleic acid (cDNA) sequences were identified. Four of these transcripts were homologous to well characterised genes, while two (band 1 and band 20) were homologous to unknown and uncharacterised partial gene sequences on the GenBank database and were thus chosen for further investigation. The partial cDNA sequences for band 1 and band 20 were designated ORP-3 and MERP-1 (respectively) due to homologies with other well-characterised gene families. Differential expression of the ORP-3 and MERP-1 genes was confirmed using Taqman™ real-time polymerase chain reaction (PCR) with 3 - 4-fold and 4-10 -fold higher levels in the CD34+ fractions of haemopoietic cells compared to CD34- populations respectively. Additionally, expression of both these genes was down regulated with proliferation and differentiation of CD34+ cells further confirming higher expression in a less differentiated subset of haemopoietic cells. The full coding sequences of ORP-3 and MERP-1 were elucidated using bioinformatics, rapid amplification of cDNA ends (RACE) and PCR amplification. The MERP-1 cDNA is 2600 nucleotides (nt) long, and localizes by bioinformatics to chromosome 7.. It consists of three exons and 2 introns spanning an entire length of 31.4 kilobases (kb). The MERP-1 open reading frame (ORF) codes for a putative 344 amino acid (aa) type II transmembrane protein with an extracellular C-terminal ependymin like-domain and an intracellular N-terminal sequence with significant homology to the cytoplasmic domains of members of the protocadherin family of transmembrane glycoproteins. Ependymins and protocadherins are well-characterised calcium-dependant cell adhesion glycoproteins. Although the function of MERP-1 remains to be elucidated, it is possible that MERP-1 like its homologues plays a role in calcium dependent cell adhesion. Differential expression of the MERP-1 gene in haemopoietic cells suggests a role in haemopoietic stem cell proliferation and differentiation, however, its broad tissue distribution implies that it may also play a role in many cell types. Characterization of the MERP-1 protein is required to elucidate these possible roles. The ORP-3 cDNA is 6631nt long, and localizes by bioinformatics to chromosome 7pl5-p21. It consists of 23 exons and 22 introns spanning an entire length of 183.5kb. The ORP-3 ORF codes for a putative 887aa protein which displays the consensus sequence for a highly conserved oxysterol-binding domain. Other well-characterised proteins expressing these domains have been demonstrated to bind oxysterols (OS) in a dose dependant fashion. OS are hydroxylated derivatives of cholesterol Their biological activities include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, including haemopoietic cells. Differential expression of the ORP-3 gene in haemopoietic cells suggests a possible role in the transduction of OS effects on haemopoietic cells, however, its broad tissue distribution implies that it may also play a role in many cell types. Further investigation of ORP-3 gene expression demonstrates a significant correlation with CD34+ sample purity, and 2-fold higher expression in a population of haemopoietic cells defined by the CD34+38- phenotype compared to more mature CD34+38+ cells. This finding, taken together with the previous observation of down-regulation of ORP-3 expression with proliferation and differentiation of CD34+ cells, indicates that ORP-3 expression may be higher in a less differentiated subset of cells with a higher proliferative capacity. This hypothesis is supported by the observation that expression of the ORP-3 gene is approximately 2-fold lower in differentiated HL60 promyelocytic cells compared to control, undifferentiated cells. ORP-3 expression in HL60 cells during normal culture conditions was also found to vary with expression positively correlated with cell number. This indicates a possible cell cycle effect on ORP-3 gene expression with levels highest when cell density, and therefore the percentage of cells in G(0)/G(1) phase of the cell cycle is highest. This observation also correlates with the observation of higher ORP-3 expression in CD34+38-cells, and in CD34+ and HL60 cells undergoing OS induced and camptothecin induced apoptosis that is preceded by cell cycle arrest at G(0)/G(1). Expression of the ORP-3 gene in CD34+ HSPCs from UCB was significantly decreased to approximately half the levels observed in control cells after 24 hours incubation in transforming growth factor beta-1 (TGFâl). As ≥90% of these cells are stimulated into cell cycle entry by TGFâl, this observation further supports the hypothesis that ORP-3 expression is highest when cells reside in the G(0)/G(1) phase of the cell cycle. Data obtained from investigation of ORP-3 gene expression in synchronised HL60 cells however does not support nor disprove this hypothesis. Culture of CD34+ enriched HSPCs and HL60 cells with 25-OHC significantly increased ORP-3 gene expression to approximately 1.5 times control levels. However, as 25-OHC treatment also increased the percentage of apoptotic cells in these experiments, it is not valid to make any conclusions regarding the regulation of ORP-3 gene expression by OS. Indeed, the observation that camptothecin induced apoptosis also increased ORP-3 gene expression in HL60 cells raises the possibility that up-regulation of ORP-3 gene expression is also associated with apoptosis, Taken together, expression of the ORP-3 gene appears to be regulated by differentiation and apoptosis of haemopoietic progenitors, and may also be positively associated with proliferative and G(0)/G(1) cell cycle status indicating a possible role in all of these processes. Given the important regulatory role of apoptosis in haemopoiesis and differential expression of the ORP-3 gene in haemopoietic progenitors, final investigations were conducted to examine the effects OS on human HSPCs. Granulocyte/macrophage colony forming units (CFU-GM) generated from human bone marrow (ABM) and umbilical cord blood (UCB) were grown in the presence of varying concentrations of three different OS - 7keto-cholesterol (7K-C), 7beta-hydroxycholesterol (7p-OHC) and 25-hydroxycholesterol (25-OHC). Similarly, the effect of OS on HL60 and CD34+ cells was investigated using annexin-V staining and flow cytometry to measure apoptosis. Reduction of nitroblue tetrazolium (NBT) was used to assess differentiative status of HL60 cells. CFU-GM from ABM and HL60 growth was inhibited by all three OS tested, with 25-OHC being the most potent. 25-OHC inhibited ≥50% of bone marrow CFU-GM and ≥95% of HL60 cell growth at a level of 1 ug/ml. Compared to UCB, CFU-GM derived from ABM were more sensitive to the effects of all OS tested. Only 25-OHC and 7(5-OHC significantly inhibited growth of UCB derived CFU-GM. OS treatment increased the number of annexin-V CD34+ cells and NBT positive HL60 cells indicating that OS inhibition of CFU-GM and HL60 cell growth can be attributed to induction of apoptosis and differentiation. From these studies, it can be concluded that dd-PCR is an excellent tool for the discovery of novel genes expressed in human HSPCs. Characterisation of the proteins encoded by the novel genes ORP-3 and MERP-1 may reveal a regulatory role for these genes in haemopoiesis. Finally, investigations into the effects of OS on haemopoietic progenitor cells has revealed that OS are a new class of inhibitors of HSPC proliferation of potential relevance in vivo and in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 2 diabetes mellitus is a metabolic disease characterised by defects in insulin secretion and insulin action and disturbances in carbohydrate, fat and protein metabolism. Hepatic insulin resistance contributes to hyperglycemia and also leads to disturbances in fat metabolism in type 2 diabetes. Psammomys obesus is a unique poly genie animal model of type 2 diabetes and obesity, ideally suited for studies examining physiological and genetic aspects of these diseases. To identify metabolic abnormalities potentially contributing to the obesity and diabetes phenotype in P. obesus, indirect calorimetry was used to characterise whole body energy expenditure and substrate utilisation. Lean-NGT, obese-IGT and obese-diabetic animals were examined in fed and fasted states and following 14 days of dietary energy restriction. Energy expenditure and fat oxidation were elevated in the obese-IGT and obese-diabetic groups in proportion to body weight. Glucose oxidation was not different between groups. Obese-diabetic P. obesus displayed elevated nocturnal blood glucose levels and fat oxidation. Following 14 days of dietary energy restriction, body weight was reduced and plasma insulin and blood glucose levels were normalised in all groups. Glucose oxidation was reduced and fat oxidation was increased. After 24 hours of fasting, plasma insulin and blood glucose levels were normalised in all groups. Energy expenditure and glucose oxidation were greatly reduced and fat oxidation was increased. Following either dietary energy restriction or fasting, energy expenditure, glucose oxidation and fat oxidation were not different between groups of P. obesus. Energy expenditure and whole body substrate utilisation in P. obesus was similar to that seen in humans. P. obesus responded normally to short term fasting and dietary energy restriction. Elevated nocturnal fat oxidation rates and plasma glucose levels in obese-diabetic P. obesus may be an important factor in the pathogenesis of obesity and type 2 diabetes in these animals. These studies have further validated P. obesus as an ideal animal model of type 2 diabetes and obesity. It was hypothesised that many genes in the liver of P. obesus involved in glucose and fat metabolism would be differentially expressed between lean-NGT and obese-diabetic animals. These genes may represent significant factors in the pathophysiology of type 2 diabetes. Two gene discovery experiments were conducted using suppression subtractive hybridisation (SSH) to enrich a cDNA library for differentially expressed genes. Experiment 1 used cDNA dot blots to screen 576 clones with cDNA derived from lean-NGT and obese-diabetic animals. 6 clones were identified as overexpressed in lean-NGT animals and 6 were overexpressed in obese-diabetic animals. These 12 clones were sequenced and SYBR-Green PCR was used to confirm differential gene expression. 4 genes were overexpressed (≥1.5 fold) in lean-NGT animals and 4 genes were overexpressed (≥1.5 fold) in obese-diabetic animals. To explore the physiological role of these genes, hepatic gene expression was examined in several physiological conditions. One gene, encoding thyroxine binding globulin (TBG), was confirmed as overexpressed in lean-NGT P. obesus with ad libitum access to food, relative to both obese-IGT and obese-diabetic animals. TBG expression decreased with fasting in all animals. Fasting TBG expression remained greater in lean-NGT animals than obese-IGT and obese-diabetic animals. TBG expression was not significantly affected by dietary energy restriction. TBG is involved in thyroid metabolism and is potentially involved in the regulation of energy expenditure. Fasting increased hepatic site 1 protease (SIP) expression in lean-NGT animals but was not significantly affected in obese-IGT and obese-diabetic animals. SIP expression was not significantly affected by dietary energy restriction. SIP is involved in the proteolytic processing of steroid response element binding proteins (SREBP). SREBPs are insulin responsive and are known to be involved in lipid metabolism. Gene expression studies found TBG and SIP were associated with obesity and diabetes. Future research will determine whether TBG and SIP are important in the pathogenesis of these diseases. Experiment 2 used SSH and cDNA microarray to screen 8064 clones. 223 clones were identified as overexpressed in lean-NGT P. obesus and 274 clones were overexpressed in obese-diabetic P. obesus (p ≤0.05). The 9 most significantly differentially expressed clones identified from the microarray screen were sequenced (p ≤0.01). 7 novel genes were identified as well as; sulfotransferase related protein and albumin. These 2 genes have not previously been associated with either type 2 diabetes or obesity. It is unclear why hepatic expression of these genes may differ between lean-NGT and obese-diabetic groups of P. obesus. Subsequent studies will explore the potential role of these novel and known genes in the pathophysiology of type 2 diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is mounting evidence in support of the view that skeletal muscle hypertrophy results from the complex and coordinated interaction of numerous signalling pathways. Well characterised components integral to skeletal muscle adaptation include the transcriptional activity of the members of the myogenic regulatory factors, numerous secreted peptide growth factors, and the regenerative potential of satellite cells. Whilst studies investigating isolated components or pathways have enhanced our current understanding of skeletal muscle hypertrophy, our knowledge of how all of these components react in concert to a common stimulus remains limited. The broad aim of this thesis was to identify and characterise novel genes involved in skeletal muscle hypertrophy. We have created a customised human skeletal muscle specific microarray which contains ∼11,000 cDNA clones derived from a normalised human skeletal muscle cDNA library as well as 270 genes with known functional roles in human skeletal muscle. The first aspect of this thesis describes the production of the microarray and evaluates the robustness and reproducibility of this analytical technique. Study one aimed to use this microarray in the identification of genes that are differentially expressed during the forced differentiation of human rhabdomyosarcoma cells, an in vitro model of skeletal muscle development. Firstly using this unique model of aberrant myogenic differentiation we aimed to identify genes with previously unidentified roles in myogenesis. Secondly, the data from this study permitted the examination of the performance of the microarray in detecting differential gene expression in a biological system. We identified several new genes with potential roles in the myogenic arrest of rhabdomyosarcoma and further characterised the expression of muscle specific genes in rhabdomyosarcoma differentiation. In study two, the molecular responses of cell cycle regulators, muscle regulatory factors, and atrophy related genes were mapped in response to a single bout of resistance exercise in human skeletal muscle. We demonstrated an increased expression of MyoD, myogenin and p21, whilst the expression of myostatin was decreased. The results of this study contribute to the existing body of knowledge on the molecular regulation skeletal muscle to a hypertrophic stimulus. In study three, the muscle samples collected in study two were analysed using the human skeletal muscle specific microarray for the identification of novel genes with potential roles in the hypertrophic process. The analysis uncovered four interesting genes (TXNIP, MLP, ASB5, FLJ 38973) that have not previously been examined in human skeletal muscle in response to resistance exercise. The functions of these genes and their potential roles in skeletal muscle are discussed. In study four, the four genes identified in study three were examined in human primary skeletal muscle cell cultures during myogenic differentiation. Human primary skeletal muscle cells were derived from the vastus lateralis muscle of 8 healthy volunteers (6 males and 2 females). Cell cultures were differentiated using serum withdrawal and serum withdrawal combined with IGF-1 supplementation. Markers of the cell proliferation, cell cycle arrest and myogenic differentiation were examined to assess the effectiveness of the differentiation stimulus. Additionally, the expressions of TXNIP, MLP, ASB5 and FLJ 38973 measured in an attempt to characterise further their roles in skeletal muscle. The expression of TXNIP changed markedly in response to both differentiation stimuli, whilst the expression of the remaining genes were not altered. Therefore it was suggested that expression of these genes might be responsive to the mechanical strain or contraction induced by the resistance exercise. In order to examine whether these novel genes responded specifically to resistance type exercise, their expression was examined following a single bout of endurance exercise. The expression of TXNIP, MLP, and FLJ 38973 remained unchanged whilst ASB5 increased 30 min following the cessation of the exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is the most significant site for whole body fat utilisation. The ability to regulate fat use has a significant impact on the development of obesity and Type II diabetes. The studies conducted during this PhD provided significant insight into the complex molecular regulation of skeletal muscle fat utilisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis shows that a plant extract favourably affects glucose utilisation and production in vitro, and identifies genes/biological pathways involved in its actions. The extract underwent fractionation and screening for effects observed. Chemical studies of active fractions led to the isolation of a compound shown to have potential anti-diabetic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The gene cluster gspCDEFGHIJKLM codes for various structural components of the type II secretion pathway which is responsible for the secretion of heat-labile enterotoxin by enterotoxigenic Escherichia coli (ETEC). In this work, we used a variety of molecular approaches to elucidate the transcriptional organization of the ETEC type II secretion system and to unravel the mechanisms by which the expression of these genes is controlled. We showed that the gspCDEFGHIJKLM cluster and three other upstream genes, yghJ, pppA, and yghG, are cotranscribed and that a promoter located in the upstream region of yghJ plays a major role in the expression of this 14-gene transcriptional unit. Transcription of the yghJ promoter was repressed 168-fold upon a temperature downshift from 37°C to 22°C. This temperature-induced repression was mediated by the global regulatory proteins H-NS and StpA. Deletion mutagenesis showed that the promoter region encompassing positions −321 to +301 relative to the start site of transcription of yghJ was required for full repression. The yghJ promoter region is predicted to be highly curved and bound H-NS or StpA directly. The binding of H-NS or StpA blocked transcription initiation by inhibiting promoter open complex formation. Unraveling the mechanisms of regulation of type II secretion by ETEC enhances our understanding of the pathogenesis of ETEC and other pathogenic varieties of E. coli.