Identification and characterisation of novel genes involved in skeletal muscle hypertrophy


Autoria(s): Carey, Kate A.
Data(s)

01/01/2004

Resumo

There is mounting evidence in support of the view that skeletal muscle hypertrophy results from the complex and coordinated interaction of numerous signalling pathways. Well characterised components integral to skeletal muscle adaptation include the transcriptional activity of the members of the myogenic regulatory factors, numerous secreted peptide growth factors, and the regenerative potential of satellite cells. Whilst studies investigating isolated components or pathways have enhanced our current understanding of skeletal muscle hypertrophy, our knowledge of how all of these components react in concert to a common stimulus remains limited. The broad aim of this thesis was to identify and characterise novel genes involved in skeletal muscle hypertrophy. We have created a customised human skeletal muscle specific microarray which contains ∼11,000 cDNA clones derived from a normalised human skeletal muscle cDNA library as well as 270 genes with known functional roles in human skeletal muscle. The first aspect of this thesis describes the production of the microarray and evaluates the robustness and reproducibility of this analytical technique. Study one aimed to use this microarray in the identification of genes that are differentially expressed during the forced differentiation of human rhabdomyosarcoma cells, an in vitro model of skeletal muscle development. Firstly using this unique model of aberrant myogenic differentiation we aimed to identify genes with previously unidentified roles in myogenesis. Secondly, the data from this study permitted the examination of the performance of the microarray in detecting differential gene expression in a biological system. We identified several new genes with potential roles in the myogenic arrest of rhabdomyosarcoma and further characterised the expression of muscle specific genes in rhabdomyosarcoma differentiation. In study two, the molecular responses of cell cycle regulators, muscle regulatory factors, and atrophy related genes were mapped in response to a single bout of resistance exercise in human skeletal muscle. We demonstrated an increased expression of MyoD, myogenin and p21, whilst the expression of myostatin was decreased. The results of this study contribute to the existing body of knowledge on the molecular regulation skeletal muscle to a hypertrophic stimulus. In study three, the muscle samples collected in study two were analysed using the human skeletal muscle specific microarray for the identification of novel genes with potential roles in the hypertrophic process. The analysis uncovered four interesting genes (TXNIP, MLP, ASB5, FLJ 38973) that have not previously been examined in human skeletal muscle in response to resistance exercise. The functions of these genes and their potential roles in skeletal muscle are discussed. In study four, the four genes identified in study three were examined in human primary skeletal muscle cell cultures during myogenic differentiation. Human primary skeletal muscle cells were derived from the vastus lateralis muscle of 8 healthy volunteers (6 males and 2 females). Cell cultures were differentiated using serum withdrawal and serum withdrawal combined with IGF-1 supplementation. Markers of the cell proliferation, cell cycle arrest and myogenic differentiation were examined to assess the effectiveness of the differentiation stimulus. Additionally, the expressions of TXNIP, MLP, ASB5 and FLJ 38973 measured in an attempt to characterise further their roles in skeletal muscle. The expression of TXNIP changed markedly in response to both differentiation stimuli, whilst the expression of the remaining genes were not altered. Therefore it was suggested that expression of these genes might be responsive to the mechanical strain or contraction induced by the resistance exercise. In order to examine whether these novel genes responded specifically to resistance type exercise, their expression was examined following a single bout of endurance exercise. The expression of TXNIP, MLP, and FLJ 38973 remained unchanged whilst ASB5 increased 30 min following the cessation of the exercise.

Identificador

http://hdl.handle.net/10536/DRO/DU:30023242

Idioma(s)

eng

Publicador

Deakin University, Faculty of Health and Behavioural Sciences, School of Exercise and Nutrition Sciences

Relação

http://dro.deakin.edu.au/eserv/DU:30023242/carey-identificationandcharacterisation-2004.pdf

http://dro.deakin.edu.au/eserv/DU:30023242/carey_kate.pdf

Palavras-Chave #Striated muscle - Hypertrophy #Genetic regulation #Gene expression
Tipo

Thesis