42 resultados para cellulose

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of in vitro studies was, conducted to determine the effects of adding a commercial enzyme product on the hydrolysis and fermentation of cellulose, xylan, and a mixture (1:1 wt/wt) of both. The enzyme product (Liquicell 2500, Specialty Enzymes and Biochemicals, Fresno, CA) was derived from Trichoderma reesei and contained mainly xylanase and cellulase activities. Addition of enzyme (0.5, 2.55 and 5.1 muL/g of DM) in the absence of ruminal fluid increased (P < 0.001) the release of reducing sugars from xylan and the mixture after 20 h of incubation at 20degreesC. Incubations with ruminal fluid showed that enzyme (0.5 and 2.55 muL/g of DM) increased (P < 0.05) the initial (up to 6 h) xylanase, endoglucanase, and beta-D-glucosidase activities in the liquid fraction by an average of 85%. Xylanase and endoglucanase activities in the solid fraction also were increased (P < 0.05) by enzyme addition, indicating an increase in fibrolytic activity due to ruminal microbes. Gas production over 96 h of incubation was determined using a gas pressure measurement technique. Incremental levels of enzyme increased (P < 0.05) the rate of gas production of all substrates, suggesting that fermentation of cellulose and xylan was enzyme-limited. However, adding the enzyme at levels higher than 2.55 muL/g of DM failed to further increase the rate of gas production, indicating that the maximal level of stimulation was already achieved at lower enzyme concentrations. It was concluded that enzymes enhanced the fermentation of cellulose and xylan by a combination of pre- and postincubation effects (i.e., an increase in the release of reducing sugars during the pretreatment phase and an increase in the hydrolytic activity of the liquid and solid fractions of the ruminal fluid), which was reflected in a higher rate of fermentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xyloglucan-acting enzymes are believed to have effects on type I primary plant cell wall mechanical properties. In order to get a better understanding of these effects, a range of enzymes with different in vitro modes of action were tested against cell wall analogues (bio-composite materials based on Acetobacter xylinus cellulose and xyloglucan). Tomato pericarp xyloglucan endo transglycosylase (tXET) and nasturtium seed xyloglucanase (nXGase) were produced heterologously in Pichia pastoris. Their action against the cell wall analogues was compared with that of a commercial preparation of Trichoderma endo-glucanase (EndoGase). Both 'hydrolytic' enzymes (nXGase and EndoGase) were able to depolymerise not only the cross-link xyloglucan fraction but also the surface-bound fraction. Consequent major changes in cellulose fibril architecture were observed. In mechanical terms, removal of xyloglucan cross-links from composites resulted in increased stiffness (at high strain) and decreased visco-elasticity with similar extensibility. On the other hand, true transglycosylase activity (tXET) did not affect the cellulose/xyloglucan ratio. No change in composite stiffness or extensibility resulted, but a significant increase in creep behaviour was observed in the presence of active tXET. These results provide direct in vitro evidence for the involvement of cell wall xyloglucan-specific enzymes in mechanical changes underlying plant cell wall re-modelling and growth processes. Mechanical consequences of tXET action are shown to be complimentary to those of cucumber expansin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymeric films have been prepared based on blends of chitosan with two cellulose ethers-hydroxypropylmethylcellulose and methylcellulose by casting from acetic acid solutions. The films were transparent and brittle in a dry state but an immersion of the samples in deionized water for over 24 h leads to their disintegration or partial dissolution. The miscibility of the polymers in the blends has been assessed by infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis. It was shown that although weak hydrogen bonding exists between the polymer functional groups the blends are not fully miscible in a dry state. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixing of aqueous solutions of poly(acrylic acid) and (hydroxypropyl) cellulose results in formation of hydrogen-bonded interpolymer complexes, which precipitate and do not allow preparation of homogeneous polymeric films by casting. In the present work the effect of pH on the complexation between poly(acrylic acid) and (hydroxypropyl)cellulose in solutions and miscibility of these polymers in solid state has been studied. The pH-induced complexation-miscibility-immiscibility transitions in the polymer mixtures have been observed. The optimal conditions for preparation of homogeneous polymeric films based on blends of these polymers have been found, and the possibility of radiation cross-linking of these materials has been demonstrated. Although the gamma-radiation treatment of solid polymeric blends was found to be inefficient, successful cross-linking was achieved by addition of N, N'- methylenebis(acrylamide). The mucoadhesive potential of both soluble and cross-linked films toward porcine buccal mucosa is evaluated. Soluble films adhered to mucosal tissues undergo dissolution within 30-110 min depending on the polymer ratio in the blend. Cross-linked films are retained on the mucosal surface for 10-40 min and then detach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bifidobacterial β-galactosidase BbgIV was immobilised on DEAE-Cellulose and Q-Sepharose via ionic binding and on amino-ethyl- and glyoxal-agarose via covalent attachment, and was then used to catalyse the synthesis of galactooligosaccharides (GOS). The immobilisation yield exceeded 90 % using ionic binding, while it was low using aminoethyl agarose (25 – 28 %) and very low using glyoxal agarose (< 3 %). This was due to the mild conditions and absence of chemical reagents in ionic binding, compared to covalent attachment. The maximum GOS yield obtained using DEAE-Cellulose and Q-Sepharose was similar to that obtained using free BbgIV (49 – 53 %), indicating the absence of diffusion limitation and mass transfer issues. For amino-ethyl agarose, however, the GOS yield obtained was lower (42 – 44 %) compared to that obtained using free BbgIV. All the supports tried significantly (P < 0.05) increased the BbgIV operational stability and the GOS synthesis productivity up to 55 °C. Besides, six successive GOS synthesis batches were performed using BbgIV immobilised on Q-Sepharose; all resulted in similar GOS yields, indicating the possibility of developing a robust synthesis process. Overall, the GOS synthesis operation performance using BbgIV was improved by immobilising the enzyme onto solid supports, in particular on Q-Sepharose

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic viscoelasticity of electrorheological fluids based on microcrystalline cellulose/castor oil suspensions was experimentally investigated in squeeze flow. The dependence of storage modulus G' and loss modulus G" parallel to external electric field on electric fields and strain amplitudes is presented. The experiments show that, when external electric field is higher than the critical field, the viscoelasticity of the ER fluids converts from linear to nonlinear, and the ER fluids transfer from solid-like state to fluid state with the growth of strain amplitude. The influences of strain amplitude and oscillatory frequency on the nonlinearity of viscoelasticity were also studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combined use of organic residue and inorganic fertiliser-phosphorus (P) is appropriate in meeting both the short and long-term P requirement of crops. To assess the influence of added inorganic fertiliser-P on the processes of decomposition and P release from the residue and the relationships with quality, prunings of Gliricidia sepium, Leucaena leucocephela, Senna siamea, Acacia mangium and Paraserienthus falcataria were incubated without and with added inorganic fertiliser-P for 56 days. Soil was added only as inoculum. Decomposition rate and amounts of acid extractable-P (P release) were in the same order: G. sepium > S. siamea > L. leucocepheta > P falcataria > A. mangium. Unlike the other residues, A. mangium released no P despite the loss of half its mass during the 8 weeks of incubation. The residue P content correlated with P release. However, decomposition rate did not correlate with residue P content but with the lignin, polyphenol and cellulose content, and ratios to P. These ratios were negatively correlated with P release suggesting that lignin and polyphenol contents influence P release more when the residue-P content is low. Results suggest that rate of decomposition influences the release of P. The critical residue P content for P release was estimated to be 0.12% < P < 0.19%. Added P had no effect on decomposition and P release from the residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surfactin is a bacterial lipopeptide produced by Bacillus subtilis and is a powerful surfactant, having also antiviral, antibacterial and antitumor properties. The recovery and purification of surfactin from complex fermentation broths is a major obstacle to its commercialization; therefore, a two-step membrane filtration process was developed using a lab scale tangential flow filtration (TFF) unit with 10 kDa MWCO regenerated cellulose (RC) and polyethersulfone (PES)membranes at three different transmembrane pressure (TMP) of 1.5 bar, 2.0 bar and 2.5 bar. Two modes of filtrations were studied, with and without cleaning of membranes prior to UF-2. In a first step of ultrafiltration (UF-1), surfactin was retained effectively by membranes at above its critical micelle concentration (CMC); subsequently in UF-2, the retentate micelles were disrupted by addition of 50% (v/v) methanol solution to allow recovery of surfactin in the permeate. Main protein contaminants were effectively retained by the membrane in UF-2. Flux of permeates, rejection coefficient (R) of surfactin and proteinwere measured during the filtrations. Overall the three different TMPs applied have no significant effect in the filtrations and PES is the more suitable membrane to selectively separate surfactin from fermentation broth, achieving high recovery and level of purity. In addition this two-step UF process is scalable for larger volume of samples without affecting the original functionality of surfactin, although membranes permeability can be affected due to exposure to methanolic solution used in UF-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1,3;1,4)-beta-d-Glucan (beta-glucan) accounts for 20% of the total cell walls in the starchy endosperm of wheat (Triticum aestivum) and is an important source of dietary fiber for human nutrition with potential health benefits. Bioinformatic and array analyses of gene expression profiles in developing caryopses identified the CELLULOSE SYNTHASE-LIKE F6 (CSLF6) gene as encoding a putative beta-glucan synthase. RNA interference constructs were therefore designed to down-regulate CSLF6 gene expression and expressed in transgenic wheat under the control of a starchy endosperm-specific HMW subunit gene promoter. Analysis of wholemeal flours using an enzyme-based kit and by high-performance anion-exchange chromatography after digestion with lichenase showed decreases in total beta-glucan of between 30% and 52% and between 36% and 53%, respectively, in five transgenic lines compared to three control lines. The content of water-extractable beta-glucan was also reduced by about 50% in the transgenic lines, and the M(r) distribution of the fraction was decreased from an average of 79 to 85 x 10(4) g/mol in the controls and 36 to 57 x 10(4) g/mol in the transgenics. Immunolocalization of beta-glucan in semithin sections of mature and developing grains confirmed that the impact of the transgene was confined to the starchy endosperm with little or no effect on the aleurone or outer layers of the grain. The results confirm that the CSLF6 gene of wheat encodes a beta-glucan synthase and indicate that transgenic manipulation can be used to enhance the health benefits of wheat products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to improve the prediction of the quantity and type of Volatile Fatty Acids (VFA) produced from fermented substrate in the rumen of lactating cows. A model was formulated that describes the conversion of substrate (soluble carbohydrates, starch, hemi-cellulose, cellulose, and protein) into VFA (acetate, propionate, butyrate, and other VFA). Inputs to the model were observed rates of true rumen digestion of substrates, whereas outputs were observed molar proportions of VFA in rumen fluid. A literature survey generated data of 182 diets (96 roughage and 86 concentrate diets). Coefficient values that define the conversion of a specific substrate into VFA were estimated meta-analytically by regression of the model against observed VFA molar proportions using non-linear regression techniques. Coefficient estimates significantly differed for acetate and propionate production in particular, between different types of substrate and between roughage and concentrate diets. Deviations of fitted from observed VFA molar proportions could be attributed to random error for 100%. In addition to regression against observed data, simulation studies were performed to investigate the potential of the estimation method. Fitted coefficient estimates from simulated data sets appeared accurate, as well as fitted rates of VFA production, although the model accounted for only a small fraction (maximally 45%) of the variation in VFA molar proportions. The simulation results showed that the latter result was merely a consequence of the statistical analysis chosen and should not be interpreted as an indication of inaccuracy of coefficient estimates. Deviations between fitted and observed values corresponded to those obtained in simulations. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A completely randomised study was completed to examine the influence of fibrolytic enzymes derived from psychrophilic, (F), mesophilic, (L) or thermophilic (Ta) sources, applied at ensiling, on the chemical characteristics and in vitro rumen fermentation of maize silage, assessed using the Reading Pressure Technique (RPT). Treatments, all in triplicate, consisted of untreated maize forage or treated with preparations F, L, Ta or a mixture (1: 1, v/v) of F and L (FL), at two levels each, and ensiled for 210 days in plastic mini-silos. Addition of enzymes L decreased (P < 0.05) silage pH relative to the control, whereas enzyme Ta tended (P < 0.10) to reduce it. Preparations F, L and Ta tended to reduce (P < 0.10) the fibre contents of the silages, with effects being attributable to a decrease in the cellulose fraction. Starch contents were reduced (P < 0.05) in the treatments including enzyme F. End-point (96 h) gas production (GP) values did not differ among treatments, suggesting that enzymes did not change the total amount of fermentable substrate. However, consistent with the decrease in starch contents, adding enzyme F reduced (P < 0.05) GP at most incubation times. Addition of enzymes increased (P < 0.05) the initial (6 h) organic matter degradation (OMD) levels in all but one treatment (F), with increases of 14, 19, and 26% for preparations L, Ta, and FL, respectively, averaged across levels. Furthermore, the addition of enzymes increased (P < 0.05) the soluble OM losses, however, these increases did not fully account for the initial increase in OMD. The latter suggests that enzymes increased solubility and also altered silage structure, making it more amenable to degradation by ruminal microorganisms. As a result of the increase in OMD, without a concomitant increase in GP, the fermentation efficiency was greatly increased (P < 0.05) in enzyme treatments. Addition of enzymes to maize at ensiling, particularly those from the mesophilic and thermophilic sources used here, have the potential to increase the initial rate of silage OMD. (C) 2003 Elsevier B.V. All rights reserved.