154 resultados para macrophages


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative opportunistic pathogen that belongs to the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly within phagocytic cells, and some epidemic strains produce a brown melanin-like pigment that can scavenge free radicals, resulting in the attenuation of the host cell oxidative burst. In this work, we demonstrate that the brown pigment produced by B. cenocepacia C5424 is synthesized from a homogentisate (HGA) precursor. The disruption of BCAL0207 (hppD) by insertional inactivation resulted in loss of pigmentation. Steady-state kinetic analysis of the BCAL0207 gene product demonstrated that it has 4-hydroxyphenylpyruvic acid dioxygenase (HppD) activity. Pigmentation could be restored by complementation providing hppD in trans. The hppD mutant was resistant to paraquat challenge but sensitive to H2O2 and to extracellularly generated superoxide anions. Infection experiments in RAW 264.7 murine macrophages showed that the nonpigmented bacteria colocalized in a dextran-positive vacuole, suggesting that they are being trafficked to the lysosome. In contrast, the wild-type strain did not localize with dextran. Colocalization of the nonpigmented strain with dextran was reduced in the presence of the NADPH oxidase inhibitor diphenyleneiodonium, and also the inducible nitric oxide inhibitor aminoguanidine. Together, these observations suggest that the brown pigment produced by B. cenocepacia C5424 is a pyomelanin synthesized from an HGA intermediate that is capable of protecting the organism from in vitro and in vivo sources of oxidative stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthrax lethal toxin (LeTx) induces rapid cell death of RAW246.7 macrophages. We recently found that a small population of these macrophages is spontaneously and temporally refractory to LeTx-induced cytotoxicity. Analysis of genome-wide transcripts of a resistant clone before and after regaining LeTx sensitivity revealed that a reduction of two closely related mitochondrial proteins, Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (Bnip3) and Bnip3-like (Bnip3L), correlates with LeTx resistance. Down-regulation of Bnip3 and Bnip3L was also found in "toxin-induced resistance" whereby sublethal doses of LeTx induce resistance to subsequent exposure to cytolytic toxin doses. The role of Bnip3 and Bnip3L in LeTx-induced cell death was confirmed by showing that overexpression of either Bnip3 or Bnip3L rendered the resistant cells susceptible to LeTx, whereas down-regulation of Bnip3 and Bnip3L in wild-type macrophages conferred resistance. The down-regulation of Bnip3 and Bnip3L mRNAs by LeTx occurred at both transcriptional and mRNA stability levels. Inhibition of the p38 pathway by lethal factor was responsible for the destabilization of Bnip3/Bnip3L mRNAs as confirmed by showing that p38 inhibitors stabilized Bnip3 and Bnip3L mRNAs and conferred resistance to LeTx cytotoxicity. Therefore, Bnip3/Bnip3L play a crucial role in LeTx-induced cytotoxicity, and down-regulation of Bnip3/Bnip3L is a mechanism of spontaneous or toxin-induced resistance of macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cenocepacia is a gram-negative, non-spore-forming bacillus and a member of the Burkholderia cepacia complex. B. cenocepacia can survive intracellularly in phagocytic cells and can produce at least one superoxide dismutase (SOD). The inability of O2- to cross the cytoplasmic membrane, coupled with the periplasmic location of Cu,ZnSODs, suggests that periplasmic SODs protect bacteria from superoxide that has an exogenous origin (for example, when cells are faced with reactive oxygen intermediates generated by host cells in response to infection). In this study, we identified the sodC gene encoding a Cu,ZnSOD in B. cenocepacia and demonstrated that a sodC null mutant was not sensitive to a H2O2, 3-morpholinosydnonimine, or paraquat challenge but was killed by exogenous superoxide generated by the xanthine/xanthine oxidase method. The sodC mutant also exhibited a growth defect in liquid medium compared to the parental strain, which could be complemented in trans. The mutant was killed more rapidly than the parental strain was killed in murine macrophage-like cell line RAW 264.7, but killing was eliminated when macrophages were treated with an NADPH oxidase inhibitor. We also confirmed that SodC is periplasmic and identified the metal cofactor. B. cenocepacia SodC was resistant to inhibition by H2O2 and was unusually resistant to KCN for a Cu,ZnSOD. Together, these observations establish that B. cenocepacia produces a periplasmic Cu,ZnSOD that protects this bacterium from exogenously generated O2- and contributes to intracellular survival of this bacterium in macrophages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously demonstrated that isolates of the Burkholderia cepacia complex can survive intracellularly in murine macrophages and in free-living Acanthamoeba. In this work, we show that the clinical isolates B. vietnamiensis strain CEP040 and B. cenocepacia H111 survived but did not replicate within vacuoles of A. polyphaga. B. cepacia-containing vacuoles accumulated the fluid phase marker Lysosensor Blue and displayed strong blue fluorescence, indicating that they had low pH. In contrast, the majority of intracellular bacteria within amoebae treated with the V-ATPse inhibitor bafilomycin A1 localized in vacuoles that did not fluoresce with Lysosensor Blue. Experiments using bacteria fluorescently labelled with chloromethylfluorescein diacetate demonstrated that intracellular bacteria remained viable for at least 24 h. In contrast, Escherichia coli did not survive within amoebae after 2 h post infection. Furthermore, intracellular B. vietnamiensis CEP040 retained green fluorescent protein within the bacterial cytoplasm, while this protein rapidly escaped from the cytosol of phagocytized heat-killed bacteria into the vacuolar lumen. Transmission electron microscopy analysis confirmed that intracellular Burkholderia cells were structurally intact. In addition, both Legionella pneumophila- and B. vietnamiensis-containing vacuoles did not accumulate cationized ferritin, a compound that localizes within the lysosome. Thus, our observations support the notion that B. cepacia complex isolates can use amoebae as a reservoir in the environment by surviving without intracellular replication within an acidic vacuole that is distinct from the lysosomal compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleotide-binding oligomerization domain protein 1 (NOD1) belongs to a family that includes multiple members with NOD and leucine-rich repeats in vertebrates and plants. NOD1 has been suggested to have a role in innate immune responses, but the mechanism involved remains unknown. Here we report that NOD1 mediates the recognition of peptidoglycan derived primarily from Gram-negative bacteria. Biochemical and functional analyses using highly purified and synthetic compounds indicate that the core structure recognized by NOD1 is a dipeptide, gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP). Murine macrophages deficient in NOD1 did not secrete cytokines in response to synthetic iE-DAP and did not prime the lipopolysaccharide response. Thus, NOD1 mediates selective recognition of bacteria through detection of iE-DAP-containing peptidoglycan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strains of the Burkholderia cepacia complex have emerged as a serious threat to patients with cystic fibrosis due to their ability to infect the lung and cause, in some patients, a necrotizing pneumonia that is often lethal. It has recently been shown that several strains of the B. cepacia complex can escape intracellular killing by free-living amoebae following phagocytosis. In this work, the ability of two B. cepacia complex strains to resist killing by macrophages was explored. Using fluorescence microscopy, electron microscopy and a modified version of the gentamicin-protection assay, we demonstrate that B. cepacia CEP021 (genomovar VI), and Burkholderia vietnamiensis (previously B. cepacia genomovar V) CEP040 can survive in PU5-1.8 murine macrophages for a period of at least 5 d without significant bacterial replication. Furthermore, bacterial entry into macrophages stimulated production of tumour necrosis factor and primed them to release toxic oxygen radicals following treatment with phorbol myristoyl acetate. These effects were probably caused by bacterial LPS, as they were blocked by polymyxin B. Infected macrophages primed with interferon gamma produced less nitric oxide than interferon-gamma-primed uninfected cells. We propose that the ability of B. cepacia to resist intracellular killing by phagocytic cells may play a role in the pathogenesis of cystic fibrosis lung infection. Our data are consistent with a model where repeated cycles of phagocytosis and cellular activation without bacterial killing may promote a deleterious inflammatory response causing tissue destruction and decay of lung function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study defines a critical role for Btk in regulating TLR4-induced crosstalk between antigen presenting cells (APCs) and natural killer (NK) cells. Reduced levels of IL-12, IL-18 and IFN-? were observed in Btk-deficient mice and ex vivo generated macrophages and dendritic cells (DCs) following acute LPS administration, whilst enhanced IL-10 production was observed. In addition, upregulation of activation markers and antigen presentation molecules on APCs was also impaired in the absence of Btk. APCs, by virtue of their ability to produce IL-12 and IL-18, are strong inducers of NK-derived IFN-?. Co-culture experiments demonstrate that Btk-deficient DCs were unable to drive wild-type or Btk-deficient NK cells to induce IFN-? production, whereas these responses could be restored by exogenous administration of IL-12 and IL-18. Thus Btk is a critical regulator of APC-induced NK cell activation by virtue of its ability to regulate IL-12 and IL-18 production in response to acute LPS administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-a, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis. © 2013 March et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental oral pig model was used to assess the pathogenic and immunogenic potential of Yersinia enterocolitica serotype O:8 wild-type strain 8081-L2 and its lipopolysaccharide (LPS) mutant derivatives: a spontaneous rough mutant 8081-R2, strain 8081-DeltawzzGB expressing O-antigen with uncontrolled chain lengths, and strain 8081-wbcEGB expressing semirough LPS with only one O-unit. Microbiological and immunological parameters of the infected pigs were followed from day 7 to 60 postinfection. The wild-type and all LPS mutant strains persisted in the lymphoid tissue of tonsils and small intestines, causing asymptomatic infection without any pathological changes. Although the pig is known as a reservoir of Yersiniae, a precise analysis of pathogenic and immunogenic parameters based on different in vitro tests (hematological response, killing ability of leukocytes and blood sera, antibody response, hydrogen peroxide production by macrophages, classical and alternative pathways of complement activation), revealed significant attenuation in the pathogenicity of the LPS mutant strains but not the loss of immunogenic potential. In comparison with the other strains, strain 8081-DeltawzzGB demonstrated more continuous leucocytosis with monocytosis, higher invasive potential, significant activation of hydrogen peroxide production by macrophages and an effective immunoglobulin G immune response accompanied by relevant histological immunomorphological rearrangements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To evaluate the role of macrophages in the development of posterior capsule opacification (PCO). Methods: For this purpose, an extracapsular lens extraction was performed in 18 consecutive Sprague-Dawley rats. Animals were treated with liposomal clodronate (Cl MDP-lip-treated group, n = 10) or phosphate-buffered saline (PBS) (control group, n = 8) 1 day preoperatively and on the first day postoperatively, and sacrificed 3 days postoperatively. Masked clinical, light microscopy and immunohistochemistry studies were conducted. The Fisher exact test and randomisation test were used to assess statistically differences between groups. Results: A statistically significant reduction in the number of macrophages (ED1+, ED7+, ED8+) was found in the Cl MDP-lip-treated group compared with the PBS-lip-treated group (p = 0.048, p = 0.004, p = 0.027, respectively). There were no statistically significant differences with regards to the presence/absence of central opacification (p = 0.29) and capsular wrinkling (p = 0.21) as detected clinically between groups. Similarly, a qualitative evaluation of the degree of PCO with regards to lens epithelial cell (LEC) proliferation, capsular wrinkling and Soemmerring ring formation showed no statistically significance between groups (p = 0.27, p = 0.061, p = 1.0, respectively). However, a statistically significant reduction in the number of lens epithelial cells (LEC) counted in the centre of the posterior capsule was found in the Cl MDP-lip- treated group (p = 0.009). Conclusion: Depletion of macrophages was accompanied by a reduction in LEC in the centre of the posterior capsule in rodents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To present a new model of posterior capsule opacification (PCO) in mice. Methods: An extracapsular lens extraction was performed in 28 consecutive mice. Animals were humanely killed 0 and 24 hours and 3 and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. Results: In 20 animals (71%), the eye appeared well healed before death. In 8 animals (29%), postoperative complications were noted. All animals developed PCO 2 weeks after surgery. Immediately after extracapsular lens extraction, lens epithelial cells were present in the inner surface of the anterior capsule and at the lens bow. At 24 hours, lens epithelial cells started to migrate toward the center of the posterior capsule. At 3 days, multilayered lens epithelial cells throughout the lens capsule and capsular wrinkling were apparent. Lens fibers and Soemmerring ring formation were observed 14 days after surgery. CD45 and CD11b macrophages were found in greater numbers 24 hours and 3 days after surgery (CD45 , P = .04 and P <.001, respectively; and CD11b , P = .01 and P = .004, respectively). The number of CD45 cells remained statistically significantly higher (P = .04) 14 days after surgery. Conclusion: In mice, PCO occurs following extracapsular lens extraction and is associated with low-grade but significant macrophage response. Clinical Relevance: The use of genetically modified mice to evaluate the pathogenic mechanisms of PCO and search for new therapeutic modalities to prevent or treat PCO is now possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. To describe a new model of posterior capsule opacification (PCO) in rodents METHODS. An extracapsular lens extraction (ECLE), by continuous curvilinear capsulorrhexis and hydrodissection, was performed in 42 consecutive Brown Norway rats. Animals were killed at 0, 6, and 24 hours and 3, 7, and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. RESULTS. In 34 (81%) of the animals the operated eye appeared well healed before death, with a clear cornea and a well-formed anterior chamber. In eight (19%) there was no view of anterior segment structures because of hyphema, fibrin, or corneal opacification. PCO was clinically evident 3 days after ECLE and was present in all animals at 2 weeks. Immediately after ECLE, lens epithelial cells (LECs) were present in the inner surface of the anterior capsule and lens bow. Twenty-four hours after surgery, LECs started to migrate toward the center of the posterior capsule. At 3 days, multilayered LECs, some spindle shaped, were present throughout the lens capsule. Capsular wrinkling was apparent. Lens fibers and Soemmering's ring were observed in all animals 14 days after surgery, indicating some degree of cellular differentiation. Activated macrophages were present in greater numbers at 3 and 14 days after surgery (P <0.05), when proliferation and migration of LECs appeared to be greatest, and lens fiber differentiation was evident, respectively. CONCLUSIONS. In rodents PCO occurs after ECLE and is associated with low-grade inflammation, mostly of mononuclear macrophages. Although no intraocular lens implantation was performed, this model appears to be valuable for studying the sequence of events that leads to PCO after cataract surgery and the extracellular matrix cues that promote lens fiber differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The authors present the unique clinical features of cavitary uveal melanoma. Design: Retrospective chart review. Participants: Eight patients with cavitary uveal melanoma. Main Outcome Measures: The clinical, ultrasonographic, and histopathologic features of eight patients with cavitary melanoma of the ciliary body were studied. Results: In all eyes there was a brown ciliary body mass that blocked transmission of light on trans-scleral transillumination. Ocular ultrasonography revealed a large, single hollow cavity (unilocular 'pseudocyst') in five cases and multiple hollow cavities (multilocular 'pseudocyst') in three cases. The cavity occupied a mean of 55% of the entire mass thickness (range, 31%-79%). In five cases, a basal uveal mass was noted on ultrasonography. Four patients underwent tumor resection; one had enucleation, and three had 1251 radioactive plaque treatment. In the five cases confirmed histopathologically, the cavitation was empty, contained erythrocytes, serous fluid, and/or pigment-laden macrophages. In no case was the cavity lined by necrotic tumor, endothelial cells, or epithelial cells. Conclusion: Ciliary body melanoma can develop an intralesional cavity resembling an intraocular cyst. The presence of a solid mass at the base and a thick wall surrounding the cavity can assist in the differentiation of cavitary melanoma from benign cyst.