24 resultados para computed tomography

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: F-18-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.

MATERIALS AND METHODS:
Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy).

RESULTS:
4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans.

CONCLUSIONS:
4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: High local control rates are achieved in stage I lung cancer using stereotactic ablative radiotherapy. Target delineation is commonly based on four-dimensional computed tomography (CT) scans. Target volumes defined by positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional') F-fluorodeoxyglucose (F-FDG) PET/CT. Materials and methods: For 16 stage I non-small cell lung cancer tumours, six approaches for deriving PET target volumes were evaluated: manual contouring, standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV (35%SUV), 41% of SUV (41%SUV) and two different source to background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum intensity projection (MIP ITV). Volumetric and positional correlation was assessed using the Dice similarity coefficient (DSC). Results: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV = 0.63, 41%SUV = 0.57. SBR-1 = 0.52, SBR-2 = 0.49. PET-based target volumes were smaller than corresponding MIP ITVs. Conclusions: Conventional three-dimensional F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use (MIP ITV). Caution is required in using three-dimensional PET for motion encompassing target volume delineation. © 2012 The Royal College of Radiologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: PET/CT scanning can determine suitability for curative therapy and inform decision making when considering radical therapy in patients with non-small cell lung cancer (NSCLC). Metastases to central mediastinal lymph nodes (N2) may alter such management decisions. We report a 2 year retrospective series assessing N2 lymph node staging accuracy with PET/CT compared to pathological analysis at surgery.

METHODS: Patients with NSCLC attending our centre (excluding those who had induction chemotherapy) who had staging PET/CT scans and pathological nodal sampling between June 2006 and June 2008 were analysed. For each lymph node assessed pathologically, the corresponding PET/CT status was determined. 64 patients with 200 N2 lymph nodes were analysed.

RESULTS: Sensitivity of PET/CT scans for indentifying involved N2 lymph nodes was
39%, specificity 96% and overall accuracy 90%. For individual lymph node analysis, logistic regression demonstrated a significant linear association between PET/CT sensitivity and time from scanning to surgery (p=0.031) but not for specificity and accuracy. Those scanned <9 weeks before pathological sampling were significantly more sensitive (64% >9 weeks, 0% ≥ 9 weeks, p=0.013) and more accurate (94% <9 weeks, 81% ≥ 9 weeks, p=0.007). Differences in specificity were not seen (97% <9 weeks, 91% ≥ 9 weeks, p=0.228). No significant difference in specificity was found at any time point.

CONCLUSIONS: We recommend that if a PET/CT scan is older than 9 weeks, and management would be altered by the presence of N2 nodes, re-staging of the
mediastinum should be undertaken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.

MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).

RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.

CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We aimed to develop a clinically relevant delayed union/non-union fracture model to evaluate a cell therapy intervention repair strategy. Histology, three-dimensional (3D) micro-computed tomography (micro-CT) imaging and mechanical testing were utilized to develop an analytical protocol for qualitative and quantitative assessment of fracture repair. An open femoral diaphyseal osteotomy, combined with periosteal diathermy and endosteal excision, was held in compression by a four pin unilateral external fixator. Three delayed union/non-union fracture groups established at 6 weeks-(a) a control group, (b) a cell therapy group, and (c) a group receiving phosphate-buffered saline (PBS) injection alone-were examined subsequently at 8 and 14 weeks. The histological response was combined fibrous and cartilaginous non-unions in groups A and B with fibrous non-unions in group C. Mineralized callus volume/total volume percentage showed no statistically significant differences between groups. Endosteal calcified tissue volume/endosteal tissue volume, at the center of the fracture site, displayed statistically significant differences between 8 and 14 weeks for cell and PBS intervention groups but not for the control group. The percentage load to failure was significantly lower in the control and cell treatment groups than in the PBS alone group. High-resolution micro-CT imaging provides a powerful tool to augment characterization of repair in delayed union/non-union fractures together with outcomes such as histology and mechanical strength measurement. Accurate, nondestructive, 3D identification of mineralization progression in repairing fractures is enabled in the presence or absence of intervention strategies. (c) 2007 Orthopaedic Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with coxarthrosis (cOA) have a reduced incidence of intracapsular femoral neck fracture, suggesting that cOA offers protection. The distribution of bone in the femoral neck was compared in cases of coxarthrosis and postmortem controls to assess the possibility that disease-associated changes might contribute to reduced fragility. Whole cross-section femoral neck biopsies were obtained from 17 patients with cOA and 22 age- and sex-matched cadaveric controls. Densitometry was performed using peripheral quantitated computed tomography (pQCT) and histomorphometry on 10-µm plastic-embedded sections. Cortical bone mass was not different between cases and controls (P > 0.23), but cancellous bone mass was increased by 75% in cOA (P = 0.014) and histomorphometric cancellous bone area by 71% (P <0.0001). This was principally the result of an increase of apparent density (mass/vol) of cancellous bone (+45%, P = 0.001). Whereas cortical porosity was increased in the cases (P <0.0001), trabecular width was also increased overall in the cases by 52% (P <0.001), as was cancellous connectivity measured by strut analysis (P <0.01). Where osteophytic bone was present (n = 9) there was a positive relationship between the amount of osteophyte and the percentage of cancellous area (P <0.05). Since cancellous bone buttresses and stiffens the cortex so reducing the risk of buckling, the increased cancellous bone mass and connectivity seen in cases of cOA probably explain, at least in part, the ability of patients with cOA to resist intracapsular fracture of the femoral neck during a fall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET), bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To describe the clinical implementation of dynamic multileaf collimation (DMLC). Custom compensated four-field treatments of carcinoma of the bladder have been used as a simple test site for the introduction of intensity modulated radiotherapy.MATERIALS AND METHODS: Compensating intensity modulations are calculated from computed tomography (CT) data, accounting for scattered, as well as primary radiation. Modulations are converted to multileaf collimator (MLC) leaf and jaw settings for dynamic delivery on a linear accelerator. A full dose calculation is carried out, accounting for dynamic leaf and jaw motion and transmission through these components. Before treatment, a test run of the delivery is performed and an absolute dose measurement made in a water or solid water phantom. Treatments are verified by in vivo diode measurements and real-time electronic portal imaging. RESULTS: Seven patients have been treated using DMLC. The technique improves dose homogeneity within the target volume, reducing high dose areas and compensating for loss of scatter at the beam edge. A typical total treatment time is 20 min. CONCLUSIONS: Compensated bladder treatments have proven an effective test site for DMLC in an extremely busy clinic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and purpose: Radiotherapy is widely used to palliate local symptoms in non-small-cell lung cancer. Using conventional X-ray simulation, it is often difficult to accurately localize the extent of the tumour. We report a randomized, double blind trial comparing target localization with conventional and virtual simulation.Methods: Eighty-six patients underwent both conventional and virtual simulation. The conventional simulator films were compared with digitally reconstructed radiographs (DRRs) produced from the computed tomography (CT) data. The treatment fields defined by the clinicians using each modality were compared in terms of field area, position and the implications for target coverage.Results: Comparing fields defined by each study arm, there was a major mis-match in coverage between fields in 66.2% of cases, and a complete match in only 5.2% of cases. In 82.4% of cases, conventional simulator fields were larger (mean 24.5+/-5.1% (95% confidence interval)) than CT-localized fields, potentially contributing to a mean target under-coverage of 16.4+/-3.5% and normal tissue over-coverage of 25.4+/-4.2%.Conclusions: CT localization and virtual simulation allow more accurate definition of the target volume. This could enable a reduction in geographical misses, while also reducing treatment-related toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kipp F, Ziebuhr W, Becker K, Krimmer V, Höbeta N, Peters G, Von Eiff C. Institute of Medical Microbiology, Hospital and Clinics, University of Münster, Germany. A 45 year old man was admitted to hospital with a right sided facial paralysis and three month history of seizures. Computed tomography showed a left temporal mass including both intracerebral and extracerebral structures. Ten years earlier the patient had undergone a neurosurgical intervention in the same anatomical region to treat a subarachnoid haemorrhage. In tissue samples and pus obtained during neurosurgery, Staphylococcus aureus was detected by a 16S rRNA-directed in situ hybridisation technique. Following long term cultivation, small colony variants (SCV) of methicillin resistant S aureus were identified. The patient was treated successfully with a combination of vancomycin and rifampin followed by prolonged treatment with teicoplanin, with no sign of infection on follow up nine months after discharge. This is the first report in which S aureus SCV have been identified as causative organisms in a patient with brain abscess and in which in situ hybridisation has been used to detect S aureus in a clinical specimen containing SCV. Antimicrobial agents such as rifampin which have intracellular activity should be included in treatment of infections caused by S aureus SCV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non–small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTVon the CT scan alone and then on the PET-CTscan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTVusing the PET-CT images compared with using CTalone for matched cases (median CI, 0.57 for CTand 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTVCT to GTVFUSED was 5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Cardiac irradiation during left-sided breast radiotherapy may lead to
deleterious cardiac side effects. Using image guided radiotherapy, it is possible
to exclude the heart from treatment fields and monitor reproducibility of virtual simulation (VS) fields at treatment delivery using electronic portal imaging (EPI). Retrospectively, we evaluate the incidence of cardiac irradiation at VS and subsequent unintended cardiac irradiation during treatment.

Methods: Patients receiving left-sided radiotherapy to the breast or chest wall,
treated with a glancing photon field technique during a four-month period, were
included. VS images and EPIs during radiotherapy delivery were visually assessed.
The presence of any portion of the heart within the treatment field at VS or during treatment was recorded. Central lung distance and maximum heart distance were recorded.

Results: Of 128 patients, 45 (35.1%) had any portion of the heart within the
planned treatment field. Of these, inclusion of the heart was clinically unavoidable in 25 (55.6%). Of those with no heart included in the treatment fields at VS, 41 (49.4%) had presence of the heart as assessed on EPI during treatment.

Conclusion: Unintended cardiac irradiation during left-sided breast radiotherapy treatment occurs in a sizeable proportion of patients.

Advances in knowledge: Despite the use of three-dimensional computed tomography simulation and cardiac shielding, sizeable proportions of patients receiving left-sided breast cancer radiotherapy have unintended cardiac irradiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: We report three cases of lateral outfracture of the inferior turbinate, which demonstrate a range of changes in the size, position and shape of the inferior turbinate.

Method: During a study of the validity of computer modelling of nasal airflow, computed tomography scans of the noses of patients who had undergone lateral outfracture of the inferior turbinate were collected. The pre-operative scan was compared with the post-operative scan six weeks later.

Results: In one patient, there was only a small lateral displacement of the inferior turbinate. In the other two cases, appreciable reduction in the volume of one inferior turbinate was noted, in addition to minor changes in the shape.

Conclusion: Lateral outfracture of the inferior turbinate produces varied and inconsistent changes in morphology which may affect the shape, size and position of the turbinate.