30 resultados para Wistar

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that inflammatory processes may play a role in the development of Alzheimerâ??s disease (AD), and that nonsteroidal anti-inflammatory drug treatments may provide protection against the onset of AD. In the current study male Wistar rats were trained in two-lever operant chambers under an alternating lever cyclic-ratio ratio (ALCR) schedule. When responding showed no trends, subjects were divided into groups. One group was bilaterally injected into the CA3 area of the hippocampus with 5 μl of aggregated β-amyloid (Aβ) suspension, and one group was bilaterally injected into the CA3 area of the hippocampus with 5 μl of sterile saline. Subgroups were treated twice daily with 0.1 ml (40 mg/kg) ibuprofen administered orally. The results indicated that chronic administration of ibuprofen protected against detrimental behavioural effects following aggregated Aβ injections. Withdrawal of ibuprofen treatment from aggregated Aβ-injected subjects produced a decline in behavioural performance to the level of the non-treated aggregated Aβ-injected group. Ibuprofen treatment reduced the numbers of reactive astrocytes following aggregated Aβ injection, and withdrawal of ibuprofen resulted in an increase of reactive astrocytes. These results suggest that induced inflammatory processes may play a role in AD, and that ibuprofen treatment may protect against some of the symptoms seen in AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mural cells (smooth muscle cells and pericytes) regulate blood flow and contribute to vessel stability. We examined whether mural cell changes accompany age-related alterations in the microvasculature of the central nervous system. The retinas of young adult and aged Wistar rats were subjected to immunohistofluorescence analysis of a-smooth muscle actin (SMA), caldesmon, calponin, desmin, and NG2 to identify mural cells. The vasculature was visualized by lectin histochemistry or perfusion of horse-radish peroxidase, and vessel walls were examined by electron microscopy. The early stage of aging was characterized by changes in peripheral retinal capillaries, including vessel broadening, thickening of the basement membrane, an altered length and orientation of desmin filaments in pericytes, a more widespread SMA distribution and changes in a subset of pre-arteriolar sphincters. In the later stages of aging, loss of capillary patency, aneurysms, distorted vessels, and foci of angiogenesis were apparent, especially in the peripheral deep vascular plexus. The capillary changes are consistent with impaired vascular autoregulation and may result in reduced pericyte-endothelial cell contact, destabilizing the capillaries and rendering them susceptible to angiogenic stimuli and endothelial cell loss as well as impairing the exchange of metabolites required for optimal neuronal function. This metabolic uncoupling leads to reactivation of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine whether neuropeptide Y (NPY)-related mechanisms become activated with progression of cardiac hypertrophy in vivo, protein mass and de novo protein synthesis (incorporation of [(14)C]Phe, 0.1 muCi ml(-1)) were assessed in cardiomyocytes, obtained from spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (8, 12, 16, 20, and 24 weeks of age), and cultured for 24 h. NPY (10(-8) M) increased protein mass of cardiomyocytes from 16-week-old SHRs by 9.2 +/- 2.1% (n = 8, P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effects of age and dual endothelin (ET)A/ETB receptor antagonism (bosentan) on aortic matrix metalloproteinase (MMP) abundance and tissue inhibitor of metalloproteinase (TIMP) expression in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS: Male SHR and control WKY rats were randomly assigned to receive placebo or bosentan (100 mg/kg per day) for 3 months. Animals were killed under terminal anaesthesia at either 20 weeks (adult) or 17-20 months (senescent). Aortic gelatinase activity was determined by zymography, whereas MT-1 MMP and TIMP-1 expression were assessed by immunoblotting. RESULTS: In WKY rats, aortic MMP-2 but not proMMP-2 activity was 3.6-fold higher (P <0.02) in the senescent compared with the adult group. TIMP-1 (twofold) and MT-1 MMP (3.8-fold) expression increased (P <0.05) with age in the WKY groups. Short-term hypertension (adult SHR versus adult WKY) increased MMP-2 to 74.7 +/- 14.1 from 18.9 +/- 3.5 arbitrary units (AU) (P = 0.0012), but did not alter proMMP-2 activity. This increased further on progression to chronic hypertension (117.4 +/- 12.2 versus 74.7 +/- 14.1 AU; P <0.02). Bosentan decreased MMP-2 (78.9 +/- 3.8 versus 117.4 +/- 12.2 AU; P = 0.014) and proMMP-2 activity (P <0.006) in the senescent SHR group. CONCLUSION: Ageing and the development/progression of hypertension are associated with increased MMP-2 activity in the aorta, which is consistent with ongoing remodelling of the vasculature. However, the underlying mechanisms regulating MMP-2 abundance in ageing and hypertension appear to be divergent, as MT-1 MMP expression is differentially altered. Dual ETA/ETB receptor antagonism did not alter the age-dependent increase in aortic MMP activity in normotensive rats. However, bosentan decreased pro and active MMP-2 activity in senescent SHR rats, indicating that ET modulates late events in vascular remodelling in hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance (NIDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with NIDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2AS(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aggregation of beta-amyloid to plaques in the brain is one of the hallmarks of Alzheimer disease (AD). Numerous studies have tried to elucidate to what degree amyloid peptides play a role in the neurodegenerative developments seen in AD. While most studies report an effect of amyloid on neural activity and cognitive abilities of rodents, there have been many inconsistencies in the results. This study investigated to what degree the different genetic backgrounds affect the outcome of beta-amyloid fragment (25-35) on synaptic plasticity in vivo in the rat hippocampus. Two strains, Wistar and Lister hooded rats, were tested. In addition, the effects of a strong (600 stimuli) and a weak stimulation protocol (100 stimuli) on impairments of LTP were analysed. Furthermore, since the state of amyloid aggregation appears to play a role in the induction of toxic processes, it was tested by dual polarisation interferometry to what degree and at what speed beta-amyloid (25-35) can aggregate in vitro. It was found that 100 nmol beta-amyloid (25-35) injected icv did impair LTP in Wistar rats when using the weak but not the strong stimulation protocol (P <0.001). One-hundred nano mole of the reverse sequence amyloid (35-25) had no effect. LTP in Lister Hooded rats was not impaired by amyloid at any stimulation protocol. The aggregation studies showed that amyloid (25-35) aggregated within hours, while amyloid (35-25) did not. These results show that the genetic background and the stimulation protocol are important variables that greatly influence the experimental outcome. The fact that amyloid (25-35) aggregated quickly and showed neurophysiological effects, while amyloid (35-25) did not aggregate and did not show any effects indicates that the state of aggregation plays an important role in the physiological effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABAA receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR a1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR a1 subunit were all significantly increased in TRMs hippocampus by real time PCR and western blot, respectively; GAT-1 and GABAR a1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR a1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (7-36)amide (tGLP-1) is inactivated by dipeptidyl peptidase (DPP) IV by removal of the NH2-terminal dipeptide His(7)-Ala(8). We examined the degradation of NH2-terminally modified His(7)-glucitol tGLP-1 and its insulin-releasing and antihyperglycaemic activity in vivo, tGLP-1 was degraded by purified DPP IV after 4 h (43% intact) and after 12 hi 89% was converted to GLP-1(9-36)amide. In contrast > 99% of His(7)-glucitol tGLP-1 remained intact at 12 h. His(7)-glucitol tGLP-1 was similarly resistant to plasma degradation in vitro. His7-glucitol tGLP-1 showed greater resistance to degradation in vivo (92% intact) compared to tGLP-1 (27% intact) 10 min after i.p. administration to Wistar rats. Glucose homeostasis was examined following i.p. injection of both peptides (12 nmol/kg) together with glucose (18 mmol/kg). Plasma glucose concentrations were significantly reduced and insulin concentrations elevated following peptides administration compared with glucose alone. The area under the curve (AUC) for glucose for controls (AUC 691 +/- 35 mM/min) was significantly lower after administration of tGLP-1 and His7-glucitol tGLP-1 (36 and 49% less; AUC; 440 +/- 40 and 353 +/- 31 mM/min, respectively; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced glycation end products (AGEs), formed from the nonenzymatic glycation of proteins and lipids with reducing sugars, have been implicated in many diabetic complications; however, their role in diabetic retinopathy remains largely unknown. Recent studies suggest that the cellular actions of AGEs may be mediated by AGE-specific receptors (AGE-R). We have examined the immunolocalization of AGEs and AGE-R components R1 and R2 in the retinal vasculature at 2, 4, and 8 months after STZ-induced diabetes as well as in nondiabetic rats infused with AGE bovine serum albumin for 2 weeks. Using polyclonal or monoclonal anti-AGE antibodies and polyclonal antibodies to recombinant AGE-R1 and AGE-R2, immunoreactivity (IR) was examined in the complete retinal vascular tree after isolation by trypsin digestion. After 2, 4, and 8 months of diabetes, there was a gradual increase in AGE IR in basement membrane. At 8 months, pericytes, smooth muscle cells, and endothelial cells of the retinal vessels showed dense intracellular AGE IR. AGE epitopes stained most intensely within pericytes and smooth muscle cells but less in basement membrane of AGE-infused rats compared with the diabetic group. Retinas from normal or bovine-serum-albumin-infused rats were largely negative for AGE IR. AGE-R1 and -R2 co-localized strongly with AGEs of vascular endothelial cells, pericytes, and smooth muscle cells of either normal, diabetic, or AGE-infused rat retinas, and this distribution did not vary with each condition. The data indicate that AGEs accumulate as a function of diabetes duration first within the basement membrane and then intracellularly, co-localizing with cellular AGE-Rs. Significant AGE deposits appear within the pericytes after long-term diabetes or acute challenge with AGE infusion conditions associated with pericyte damage. Co-localization of AGEs and AGE-Rs in retinal cells points to possible interactions of pathogenic significance.