138 resultados para Non-Small-Cell Lung

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Radiotherapy is widely used to palliate local symptoms in non-small-cell lung cancer. Using conventional X-ray simulation, it is often difficult to accurately localize the extent of the tumour. We report a randomized, double blind trial comparing target localization with conventional and virtual simulation.Methods: Eighty-six patients underwent both conventional and virtual simulation. The conventional simulator films were compared with digitally reconstructed radiographs (DRRs) produced from the computed tomography (CT) data. The treatment fields defined by the clinicians using each modality were compared in terms of field area, position and the implications for target coverage.Results: Comparing fields defined by each study arm, there was a major mis-match in coverage between fields in 66.2% of cases, and a complete match in only 5.2% of cases. In 82.4% of cases, conventional simulator fields were larger (mean 24.5+/-5.1% (95% confidence interval)) than CT-localized fields, potentially contributing to a mean target under-coverage of 16.4+/-3.5% and normal tissue over-coverage of 25.4+/-4.2%.Conclusions: CT localization and virtual simulation allow more accurate definition of the target volume. This could enable a reduction in geographical misses, while also reducing treatment-related toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunohistochemical studies on formalin-fixed, paraffin-embedded (FFPE) tissue utilizing polyclonal antibodies form the cornerstone of many reports claiming to demonstrate erythropoietin receptor (EPOR) expression in malignant tissue. Recently, Elliott et al. (Blood 2006;107:1892-1895) reported that the antibodies commonly used to detect EPOR expression also detect non-EPOR proteins, and that their binding to EPOR was severely abrogated by two synthetic peptides based on the sequence of heat shock protein (HSP) 70, HSP70-2, and HSP70-5. We have investigated the specificity of the C20 antibody for detecting EPOR expression in non-small cell lung carcinoma (NSCLC) utilizing tissue microarrays. A total of 34 cases were available for study. Antibody absorbed with peptide resulted in marked suppression of cytoplasmic staining compared with nonabsorbed antibody. Four tumors that initially showed a membranous pattern of staining retained this pattern with absorbed antibody. Positive membranous immunoreactivity was also observed in 6 of 30 tumors that originally showed a predominantly cytoplasmic pattern of staining. Using the C20 antibody for Western blots, we detected three main bands, at 100, 66, and 59 kDa. Preincubation with either peptide caused abolition of the 66-kDa band, which contains non-EPOR sequences including heat shock peptides. These results call into question the significance of previous immunohistochemical studies of EPOR expression in malignancy and emphasize the need for more specific anti-EPOR antibodies to define the true extent of EPOR expression in neoplastic tissue

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. At present no reliable biomarkers are available to guide the management of this condition. Microarray technology may allow appropriate biomarkers to be identified but present platforms are lacking disease focus and are thus likely to miss potentially vital information contained in patient tissue samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Positron emission tomography (PET), in addition to computed tomography (CT), has an effect in target volume definition for radical radiotherapy (RT) for non–small-cell lung cancer (NSCLC). In previously PET-CT staged patients with NSCLC, we assessed the effect of using an additional planning PET-CT scan for gross tumor volume (GTV) definition. Methods and Materials: A total of 28 patients with Stage IA-IIIB NSCLC were enrolled. All patients had undergone staging PET-CT to ensure suitability for radical RT. Of the 28 patients, 14 received induction chemotherapy. In place of a RT planning CT scan, patients underwent scanning on a PET-CT scanner. In a virtual planning study, four oncologists independently delineated the GTVon the CT scan alone and then on the PET-CTscan. Intraobserver and interobserver variability were assessed using the concordance index (CI), and the results were compared using the Wilcoxon signed ranks test. Results: PET-CT improved the CI between observers when defining the GTVusing the PET-CT images compared with using CTalone for matched cases (median CI, 0.57 for CTand 0.64 for PET-CT, p = .032). The median of the mean percentage of volume change from GTVCT to GTVFUSED was 5.21% for the induction chemotherapy group and 18.88% for the RT-alone group. Using the Mann-Whitney U test, this was significantly different (p = .001). Conclusion: PET-CT RT planning scan, in addition to a staging PET-CT scan, reduces interobserver variability in GTV definition for NSCLC. The GTV size with PET-CT compared with CT in the RT-alone group increased and was reduced in the induction chemotherapy group.