60 resultados para Lymph Nodes

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regulatory T (Treg) cells limit the onset of effective antitumor immunity, through yet-ill-defined mechanisms. We showed the rejection of established ovalbumin (OVA)-expressing MCA101 tumors required both the adoptive transfer of OVA-specific CD8(+) T cell receptor transgenic T cells (OTI) and the neutralization of Foxp3(+) T cells. In tumor-draining lymph nodes, Foxp3(+) T cell neutralization induced a marked arrest in the migration of OTI T cells, increased numbers of dendritic cells (DCs), and enhanced OTI T cell priming. Using an in vitro cytotoxic assay and two-photon live microscopy after adoptive transfer of DCs, we demonstrated that Foxp3(+) T cells induced the death of DCs in tumor-draining lymph nodes, but not in the absence of tumor. DC death correlated with Foxp3(+) T cell-DC contacts, and it was tumor-antigen and perforin dependent. We conclude that Foxp3(+) T cell-dependent DC death in tumor-draining lymph nodes limits the onset of CD8(+) T cell responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated whether (a) carcinoembryonic antigen (CEA), cytokeratin-20 (CK-20) and guanylyl cyclase C (GCC) are clinically useful markers for the molecular detection of submicroscopic metastases in colorectal cancer (CRC) and (b) whether overexpression of CEA, CK-20 and GCC can be reliably detected in formalin-fixed, paraffin-embedded tissues as well as frozen lymph nodes. We studied 175 frozen lymph nodes and 158 formalin-fixed, paraffin-embedded lymph nodes from 28 cases of CRC. CEA or CK-20 or GCC-specific polymerase chain reaction (PCR) was carried out on mRNA transcripts extracted from the nodal tissues. Ten out of I I Dukes' B CRC cases had detectable CEA and CK-20 while 6 out of 11 Dukes' B CRC cases had detectable GCC. In general, the difference of re-staged cases when comparing frozen and paraffin-embedded samples was marked; the only statistically significant correlation between frozen and paraffin tissue was for the CEA marker. Our results indicated a high incidence (>50%) of detecting micrometastases in histologically-negative lymph nodes at the molecular level. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity is poorly defined. To track and discriminate LCs from dermal DCs in vivo, we developed knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene. By using vital imaging, we showed that most EGFP(+) LCs were sessile under steady-state conditions, whereas skin inflammation induced LC motility and emigration to lymph nodes (LNs). After skin immunization, dermal DCs arrived in LNs first and colonized areas distinct from slower migrating LCs. LCs reaching LNs under steady-state or inflammatory conditions expressed similar levels of costimulatory molecules. Langerin and EGFP were also expressed on thymic DCs and on blood-derived, CD8alpha(+) DCs from all secondary lymphoid organs. By using a similar knockin strategy involving a diphtheria toxin receptor (DTR) fused to EGFP, we demonstrated that LCs were dispensable for triggering hapten-specific T cell effectors through skin immunization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immunomagnetic separation (IMS) can selectively isolate and concentrate Mycobacterium bovis cells from lymph node tissue to facilitate subsequent detection by PCR (IMS-PCR) or culture (IMS-MGIT). This study describes application of these novel IMS-based methods to test for M. bovis in a survey of 280 bovine lymph nodes (206 visibly lesioned (VL), 74 non-visibly lesioned (NVL)) collected at slaughter as part of the Northern Ireland bovine TB eradication programme. Their performance was evaluated relative to culture. Overall, 174 (62.1%) lymph node samples tested positive by culture, 162 (57.8%) by IMS-PCR (targeting IS6110), and 196 (70.0%) by IMS-MGIT culture. Twelve (6.9%) of the 174 culture positive lymph node samples were not detected by either of the IMS-based methods. However, an additional 78 M. bovis positive lymph node samples (26 (12.6%) VL and 54 (73.0%) NVL) were detected by the IMS-based methods and not by culture. When low numbers of viable M. bovis are present in lymph nodes (e.g. in NVLs of skin test reactor cattle) decontamination prior to culture may adversely affect viability, leading to false negative culture results. In contrast, IMS specifically captures whole M. bovis cells (live, dead or potentially dormant) which are not subject to any deleterious treatment before detection by PCR or MGIT culture. During this study only 2.7% of NVL lymph nodes tested culture positive, whereas 73% of the same samples tested M. bovis positive by the IMS-based tests. Results clearly demonstrate that not only are the IMS-based methods more rapid but they have greater detection sensitivity than the culture approach currently used for the detection of M. bovis infection in cattle.. Adoption of the IMS-based methods for lymph node testing would have the potential to improve M. bovis detection in clinical samples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immunohistochemistry of histologically negative axillary lymph nodes in breast-cancer patients resulted in upstaging of the sentinel lymph node in eight (14%) of 52 patients, The resulting information altered clinical management in six of these patients. Thus, this technique may affect clinical decision-making in breast-cancer patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human (h)Langerin/CD207 is a C-type lectin of Langerhans cells (LC) that induces the formation of Birbeck granules (BG). In this study, we have cloned a cDNA-encoding mouse (m)Langerin. The predicted protein is 66% homologous to hLangerin with conservation of its particular features. The organization of human and mouse Langerin genes are similar, consisting of six exons, three of which encode the carbohydrate recognition domain. The mLangerin gene maps to chromosome 6D, syntenic to the human gene on chromosome 2p13. mLangerin protein, detected by a mAb as a 48-kDa species, is abundant in epidermal LC in situ and is down-regulated upon culture. A subset of cells also expresses mLangerin in bone marrow cultures supplemented with TGF-beta. Notably, dendritic cells in thymic medulla are mLangerin-positive. By contrast, only scattered cells express mLangerin in lymph nodes and spleen. mLangerin mRNA is also detected in some nonlymphoid tissues (e.g., lung, liver, and heart). Similarly to hLangerin, a network of BG form upon transfection of mLangerin cDNA into fibroblasts. Interestingly, substitution of a conserved residue (Phe(244) to Leu) within the carbohydrate recognition domain transforms the BG in transfectant cells into structures resembling cored tubules, previously described in mouse LC. Our findings should facilitate further characterization of mouse LC, and provide insight into a plasticity of dendritic cell organelles which may have important functional consequences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin(+) dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin(+) DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin(+) DCs in skin draining LNs. Both epidermal and dermal Langerin(+) DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin(+) DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Langerin is a C-type lectin receptor that recognizes glycosylated patterns on pathogens. Langerin is used to identify human and mouse epidermal Langerhans cells (LCs), as well as migratory LCs in the dermis and the skin draining lymph nodes (DLNs). Using a mouse model that allows conditional ablation of langerin(+) cells in vivo, together with congenic bone marrow chimeras and parabiotic mice as tools to differentiate LC- and blood-derived dendritic cells (DCs), we have revisited the origin of langerin(+) DCs in the skin DLNs. Our results show that in contrast to the current view, langerin(+)CD8(-) DCs in the skin DLNs do not derive exclusively from migratory LCs, but also include blood-borne langerin(+) DCs that transit through the dermis before reaching the DLN. The recruitment of circulating langerin(+) DCs to the skin is dependent on endothelial selectins and CCR2, whereas their recruitment to the skin DLNs requires CCR7 and is independent of CD62L. We also show that circulating langerin(+) DCs patrol the dermis in the steady state and migrate to the skin DLNs charged with skin antigens. We propose that this is an important and previously unappreciated element of immunosurveillance that needs to be taken into account in the design of novel vaccine strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)-mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin(+), skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin(+) dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin(+), skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin(+) DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin(+) DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.