41 resultados para Bacillus weihenstephanensis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of bacteria in the natural environment live within the confines of a biofilm. The Gram-positive bacterium Bacillus subtilis forms biofilms that exhibit a characteristic wrinkled morphology and a highly hydrophobic surface. A critical component in generating these properties is the protein BslA, which forms a coat across the surface of the sessile community. We recently reported the structure of BslA, and noted the presence of a large surface-exposed hydrophobic patch. Such surface patches are also observed in the class of surface-active proteins known as hydrophobins, and are thought to mediate their interfacial activity. However, although functionally related to the hydrophobins, BslA shares no sequence nor structural similarity, and here we show that the mechanism of action is also distinct. Specifically, our results suggest that the amino acids making up the large, surface-exposed hydrophobic cap in the crystal structure are shielded in aqueous solution by adopting a random coil conformation, enabling the protein to be soluble and monomeric. At an interface, these cap residues refold, inserting the hydrophobic side chains into the air or oil phase and forming a three-stranded β-sheet. This form then self-assembles into a well-ordered 2D rectangular lattice that stabilizes the interface. By replacing a hydrophobic leucine in the center of the cap with a positively charged lysine, we changed the energetics of adsorption and disrupted the formation of the 2D lattice. This limited structural metamorphosis represents a previously unidentified environmentally responsive mechanism for interfacial stabilization by proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of Bacillus subtilis biofilms, consisting of cells encapsulated within an extracellular matrix of exopolysaccharide and protein, requires the polyamine spermidine. A recent study reported that (1) related polyamine norspermidine is synthesized by B. subtilis using the equivalent of the Vibrio cholerae biosynthetic pathway, (2) exogenous norspermidine at 25 μM prevents B. subtilis biofilm formation, (3) endogenous norspermidine is present in biofilms at 50-80 μM, and (4) norspermidine prevents biofilm formation by condensing biofilm exopolysaccharide. In contrast, we find that, at concentrations up to 200 μM, exogenous norspermidine promotes biofilm formation. We find that norspermidine is absent in wild-type B. subtilis biofilms at all stages, and higher concentrations of exogenous norspermidine eventually inhibit planktonic growth and biofilm formation in an exopolysaccharide-independent manner. Moreover, orthologs of the V. cholerae norspermidine biosynthetic pathway are absent from B. subtilis, confirming that norspermidine is not physiologically relevant to biofilm function in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background

Whilst there have been a number of insights into the subsets of CD4+ T cells induced by pathogenicBacillus anthracis infections in animal models, how these findings relate to responses generated in naturally infected and vaccinated humans has yet to be fully established. We describe the cytokine profile produced in response to T cell stimulation with a previously defined immunodominant antigen of anthrax, lethal factor (LF), domain IV, in cohorts of individuals with a history of cutaneous anthrax, compared with vaccinees receiving the U.K. licenced Anthrax Vaccine Precipitated (AVP) vaccine.

Findings

We found that immunity following natural cutaneous infection was significantly different from that seen after vaccination. AVP vaccination was found to result in a polarized IFNγ CD4+ T cell response, while the individuals exposed to B. anthracis by natural infection mounted a broader cytokine response encompassing IFNγ, IL-5, −9, −10, −13, −17, and −22.

Conclusions

Vaccines seeking to incorporate the robust, long-lasting, CD4 T cell immune responses observed in naturally acquired cutaneous anthrax cases may need to elicit a similarly broad spectrum cellular immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of increasing concentrations (65, 130, 325, 1,300, and 3,250 μg/g soil dry weight) of 1,2-dichlorobenzene (1,2-DCB) on the microbial biomass, metabolic potential, and diversity of culturable bacteria was investigated using soil microcosms. All doses caused a significant (p < 0.05) decrease in viable hyphal fungal length. Bacteria were more tolerant, only direct total counts in soils exposed to 3,250 μg/g were significantly (p < 0.05) lower than untreated controls, and estimates of culturable bacteria showed no response. Pseudomonads counts were stimulated by 1,2-DCB concentrations of up to 325 μg/g; above this level counts were similar to controls. Fatty acid methyl ester analysis of taxonomic bacterial composition reflected the differential response of specific genera to increasing 1,2-DCB concentrations, especially the tolerance of Bacillus to the highest concentrations. The shifts in community composition were reflected in estimates of metabolic potential assessed by carbon assimilation (Biolog) ability. Significantly fewer (p < 0.05) carbon sources were utilized by communities exposed to 1,2-DCB concentrations greater than 130 μg/g (<64 carbon sources utilized) than control soils (83); the ability to assimilate individual carbohydrates sources was especially compromised. The results of this study demonstrate that community diversity and metabolic potential can be used as effective bioindicators of pollution stress and concentration effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: To analyse the microflora of subgingival plaque from patients with Papillon-Lefévre syndrome (PLS), which is a very rare disease characterised by palmar-plantar hyperkeratosis with precocious periodontal destruction.

METHODS: Bacterial isolates were identified using a combination of commercial identification kits, traditional laboratory tests, and gas liquid chromatography. Some isolates were also subjected to partial 16S rDNA sequencing. Plaque samples were also assayed for the presence of Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans in a quantitative enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies.

RESULTS: The culture results showed that most isolates were capnophilic and facultatively anaerobic species-mainly Capnocytophaga spp and Streptococcus spp. The latter included S. constellatus, S. oralis, and S. sanguis. Other facultative bacteria belonged to the genera gemella, kingella, leuconostoc, and stomatococcus. The aerobic bacteria isolated were species of neisseria and bacillus. Anaerobic species included Prevotella intermedia, P. melaninogenica, and P. nigrescens, as well as Peptostreptococcus spp. ELISA detected P gingivalis in one patient in all sites sampled, whereas A. actinomycetemcomitans was detected in only one site from the other patient. Prevotella intermedia was present in low numbers.

CONCLUSIONS: Patients with PLS have a very complex subgingival flora including recognised periodontal pathogens. However, no particular periodontopathogen is invariably associated with PLS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Human alpha defensins are a family of neutrophil-derived antimicrobial peptides also known as human neutrophil peptides (HNPs). The defensin family of peptides are characterised by six invariant cysteine residues forming three disulphide bridges. The formation of the correct disulphide pairs complicates the synthesis of full length human alpha defensin and limits its therapeutic potential as an antimicrobial peptide. Objectives: The aim of this study was to determine whether truncated alpha defensins displayed antimicrobial activity against a range of micro-organisms including oral pathogens. Methods: Engineered peptides were synthesised by solid-phase methods using standard Fmoc chemistry. Antibacterial assays were performed using a previously described ultra sensitive radial diffusion method. A total of five engineered defensin peptides and full length alpha defensin were tested for their sensitivity against eight micro-organisms, including Gram negative bacteria, Gram positive bacteria and fungal pathogens Results: Antimicrobial activity was identified as clear zones around peptide-containing wells. Zone diameters were used to calculate minimum inhibitory concentrations (MICs) for each peptide. There was considerable variability in the susceptibility of the micro-organisms to the truncated analogues. Bacillus subtilis and Enterococcus faecalis were sensitive to the majority of the engineered peptides whereas Staphylococcus aureus, Escherichia coli and Candida albicans displayed resistance (defined as an MIC of greater than 250 ug/ml) to the truncated defensins. Of the five engineered peptides synthesised, the 2-aminobenzoic acid (Abz)-containing analogues based on the C-terminal sequence of alpha defensin displayed MIC values closest to that of the full length defensin in 5 out of 8 micro-organisms studied. Conclusion: This study demonstrates that truncated alpha defensins display variable antimicrobial activity against a range of micro-organisms, including oral pathogens. The generation of truncated defensins without disulphide bridges simplifies their synthesis and increases their therapeutic potential.