7 resultados para MHC

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous leukocyte populations are essential for pregnancy success. Uterine natural killer (uNK) cells are chief amongst these leukocytes and represent a unique lineage with limited cytotoxicity but abundant angiokine production. They possess a distinct phenotype of activating and inhibitory receptors that recognize major histocompatibility complex (MHC) molecules, such as the killer immunoglobulin like receptors (KIRs; mouse Ly49), and MHC-independent activating receptors, including the aryl hydrocarbon receptor (AHR) and natural cytotoxicity receptor 1 (NCR1). While the roles of MHC-dependent receptors are widely addressed in pregnancy, MHC-independent receptors are relatively unstudied. This thesis investigated the roles of MHC-independent receptors in promotion of mouse pregnancy and characterized early leukocyte interactions in the presence and absence of NCR1. It was hypothesized that loss of MHC-independent receptors impairs uNK cell development resulting in aberrations in leukocyte function and decidual vasculature. Implantation sites from Ahr-/- and Ncr1Gfp/Gfp mice were assessed using whole mount in situ immunohistochemistry (WM-IHC) and histochemical techniques. Leukocyte interactions identified during preliminary WM-IHC studies were confirmed as immune synapses. The novel identification of immune synapses in early mouse pregnancy compelled further examination of leukocyte conjugates in wildtype C57BL/6 and Ncr1Gfp/Gfp mice. In Ahr-/- and Ncr1Gfp/Gfp mice, receptor loss resulted in reduced uNK cell diameters, impaired decidual vasculature, and failures in spiral artery remodeling. Ahr-/- mice had severe fertility deficits whereas Ncr1Gfp/Gfp mice had increased fetal resorption indicating differing receptor requirements in pregnancy success. NCR1 loss primarily affected uNK cell maturation and function as identified by alterations in granule ultrastructure, lytic protein expression, and angiokine production. Leukocyte conjugates were frequent in early C57BL/6 decidua basalis and included uNK cells conjugating first with antigen presenting cells and then with T cells. Overall conjugate formation was reduced in the absence of NCR1, but specific uNK cell conjugations were unaffected by receptor loss. While KIR-MHC interactions are associated with numerous pregnancy complications in humans, the role of other uNK cell receptors are not well characterized. These results illustrate the importance of MHC-independent receptors in uNK cell activation during early pregnancy in mice and encourage further studies of pregnancy complications that may occur independently of maternal KIR-MHC contributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies revealed that, upon exposure to hypoxia, tumour cells acquire resistance to the cytolytic activity of IL-2-activated lymphocytes. The MHC class I chain-related (MIC) molecules – comprised of MICA and MICB – are ligands for the activating NKG2D receptor on Natural Killer (NK) and CD8+ T cells. MIC-NKG2D interactions lead to the activation of NK and CD8+ T cells and the subsequent lysis of the tumour cells. The study also showed that the mechanism of the hypoxia-mediated immune escape involves the shedding of MIC, specifically MICA, from the tumour cell surface. The objective of the present study was to determine whether the shedding of MICA requires the expression of hypoxia inducible factor-1 (HIF-1), a transcription factor that regulates cellular adaptations to hypoxia. Exposure to hypoxia (0.5% O2 vs. 20% O2) led to the shedding of MIC from the surface of MDA-MB-231 human breast cancer cells and DU-145 human prostate cancer cells as determined by flow cytometry. Knockdown of HIF-1α mRNA using siRNA technology resulted in inhibition of HIF-1α accumulation under hypoxic conditions as determined by Western blot analysis. Parallel study revealed that knockdown of HIF-1α also blocked the shedding of MICA from the surface of MDA-MB-231 cells exposed to hypoxia. These results indicate that HIF-1 is required for the hypoxia-mediated shedding of MICA and, consequently, that HIF-1 may play an important role in tumour immune escape. Ongoing studies aim to determine the HIF-1 target genes involved in the shedding of MICA under hypoxia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key step in malignant progression is the acquired ability of tumour cells to escape immune-mediated lysis. A potential mechanism by which tumour cells avoid immune destruction involves the shedding of MHC Class I Chain-Related Protein A (MICA), a Natural Killer (NK) cell-activating ligand, from the tumour cell membrane. Hypoxia has been shown to cause increased MICA shedding; however, this hypoxia-induced effect can be attenuated by pharmacological activation of the cyclic guanosine monophosphate (cGMP)-dependent nitric oxide (NO)-signalling pathway in cancer cells. The primary objective of the present study was to determine whether treatment of tumour-bearing nude mice with the NO-mimetic glyceryl trinitrate (GTN) attenuates in vivo tumour growth and if so, whether this effect is dependent on the presence of an intact NK cell compartment. Results indicated that continuous transdermal administration of GTN (1.8 µg/h) can significantly attenuate the growth of transplanted human DU-145 prostate tumours but that this effect of GTN is lost in mice whose NK-cells have been depleted. Tumours and serum from the mice in this study were analysed to determine whether GTN treatment had any effect on the expression levels of proteins integral to the proposed MICA shedding mechanism; however, the results of these studies were inconclusive. As phosphodiesterase (PDE) inhibition represents a potential method to enhance NO-signalling, experiments were performed to determine whether treatment with the PDE5/6 inhibitor zaprinast could also attenuate hypoxia-induced MICA shedding and decrease in vivo growth of DU-145 tumours. Results demonstrated that treatment with zaprinast (10 mg/kg) significantly attenuates MICA shedding in DU-145 cancer cells and significantly decreases in vivo tumour growth. Taken together, the results of these experiments indicate that GTN attenuates tumour growth by sensitising tumour cells to innate immunity, likely by increasing membrane-associated tumour cell MICA levels through the reactivation of NO-signalling, and that zaprinast decreases tumour growth likely through a similar mechanism. These findings are important because they indicate that agents capable of reactivating NO-signalling, such as NO-mimetics and PDE inhibitors, can potentially be used as immunosensitisers in the treatment and/or prevention of cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, a chronic idiopathic disease of the esophagus has emerged, which is now known as eosinophilic esophagitis (EoE). Incomplete knowledge regarding the pathogenesis of EoE has limited treatment options. EoE is known to be a Th2-type immune-mediated disorder. Based on previous studies in both patients and experimental models, it is possible that an abnormal reaction to antigen mediates the pathophysiology of EoE. In this thesis, symptoms and signs unique to EoE were identified by an age-matched, case-controlled study of 326 patients with EoE and gastroesophageal reflux disease. The molecular mechanisms involved in antigen detection in the esophagus, in relation to EoE were then investigated. Esophageal epithelial cells were found, for the first time, to be capable of acting as non-professional antigen presenting cells, with the ability to engulf, process and present antigen on MHC class II to T helper lymphocytes. Antigen presentation by esophageal epithelial cells was induced by interferon-γ, which is increased in biopsies from patients with EoE. Next, it was discovered that esophageal epithelial cell lines expressed functional toll-like receptor (TLR) 2 and TLR3, but in esophageal mucosal biopsies only infiltrating immune cells (including eosinophils) expressed TLR2 and TLR3. Finally, the potential involvement of IgE in the pathogenesis of esophageal inflammation was investigated. IgE in the esophagus was found to be present on mast cells, which are increased in density in the esophageal mucosae of patients with EoE and especially those with a history of atopy. Mechanisms of antigen detection may mediate the pathophysiology of EoE in the esophagus through antigen presentation by epithelial cells, detection by TLRs on immune cells and detection through IgE on mucosal mast cells. Together, these findings demonstrate that mechanisms of antigen detection may actually contribute to the pathophysiology of EoE. Through increased understanding of the mechanisms of EoE, the results of this thesis may contribute to future therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biologically active 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) binds the vitamin D receptor (VDR) to exert its effect on target cells. VDR expression is found in a number of immune cells including professional antigen-presenting cells such as dendritic cells. It has been found that the actions of 1,25-(OH)2D3 on the immune system are mainly immunosuppressive. The cross-presentation pathway allows for exogenously derived antigens to be presented by pAPCs on MHC-I molecules to CD8+ T cells. CD8+ T cell activation results in the expansion of epitope-specific T cell populations that confer host protection. These epitopes can be organized into an immunodominance hierarchy. Previous work demonstrated that introducing LCMV-NP via the cross-priming pathway significantly alters the immunodominance hierarchy of a subsequent LCMV infection. Building upon these observations, our study assessed the effects of LCMV-NP cross priming in the presence of a single dose of 1,25-(OH)2D3. Treatment with 1,25-(OH)2D3 was found to have biological effects in our model system. In vitro pAPCs were demonstrated to up-regulate IL-10 and CYP24A1 mRNA, in addition to the transactivation of cellular VDR, as demonstrated by a relocalization to the nuclear region. Mice treated with 1,25-(OH)2D3 were found to produce up-regulated IL-10 and CYP24A1 transcripts. Expression of VDR was increased at both the transcript and protein level. Our results demonstrate that a single dose of 1,25-(OH)2D3 does not affect the cross-priming pathway in this system. Treatment with 1,25-(OH)2D3 did not influence the ability of differentiated pAPCs to phagocytose or cross-present exogenous antigen to epitope-specific CD8+ T cells. Furthermore, 1,25-(OH)2D3 did not alter cross-priming or the establishment of the LCMV immunodominance hierarchy in vivo. By confirming that 1,25-(OH)2D3 does not suppress cross-priming in our model, our study helps to expand the understanding of the immunomodulatory role of exogenous 1,25-(OH)2D3 on the outcome of virus infection. Collectively, our data supports the observation that the role of 1,25-(OH)2D3 in the immune system is not always associated with suppressive effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.