An immune modulatory role for the fes proto-oncogene


Autoria(s): Alotaibi, Faizah
Contribuinte(s)

Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))

Data(s)

13/07/2015

21/07/2015

24/07/2016

21/07/2015

Resumo

The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.

Thesis (Master, Pathology & Molecular Medicine) -- Queen's University, 2015-07-13 16:20:30.348

Identificador

http://hdl.handle.net/1974/13420

Idioma(s)

en

en

Relação

Canadian theses

Direitos

Queen's University's Thesis/Dissertation Non-Exclusive License for Deposit to QSpace and Library and Archives Canada

ProQuest PhD and Master's Theses International Dissemination Agreement

Intellectual Property Guidelines at Queen's University

Copying and Preserving Your Thesis

This publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.

Palavras-Chave #fes oncogene #immune system
Tipo

Thesis