22 resultados para Natural sciences and mathematics

em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oogenesis is a prerequisite for embryogenesis in Metazoa. During both biological processes important decisions must be made to form the embryo and hence ensure the next generation: (1) Maternal gene products (mRNAs, proteins and nutrients) must be supplied to the embryo. (2) Polarity must be established and axes must be specified. While incorporation of maternal gene products occurs during oogenesis, the time point of polarity establishment and axis specification varies among species, as it is accomplished either prior, during, or after fertilisation. But not only the time point when these events take place varies among species but also the underlying mechanisms by which they are triggered. For the nematode model Caenorhabditis elegans the underlying pathways and gene regulatory networks (GRNs) are well understood. It is known that there the sperm entry point initiates a primary polarity in the 1-celled egg and with it the establishment of the anteroposterior axis. However, studies of other nematodes demonstrated that polarity establishment can be independent of sperm entry (Goldstein et al., 1998; Lahl et al., 2006) and that cleavage patterns, symmetry formation and cell specification also differ from C. elegans. In contrast to the studied Chromadorea (more derived nematodes including C. elegans), embryos of some marine Enoplea (more basal representatives) even show no discernible early polarity and blastomeres can adopt variable cell fates (Voronov and Panchin 1998). The underlying pathways controlling the obviously variant embryonic processes in non-Caenorhabditis nematodes are essentially unknown. In this thesis I addressed this issue by performing a detailed unbiased comparative transcriptome analysis based on microarrays and RNA sequencing of selected developmental stages in a variety of nematodes from different phylogenetic branches with C. elegans as a reference system and a nematomorph as an outgroup representative. In addition, I made use of available genomic data to determine the presence or absence of genes for which no expression had been detected. In particular, I focussed on components of selected pathways or GRNs which are known to play essential roles during C. elegans development and/or other invertebrate or vertebrate model systems. Oogenesis must be regulated differently in non-Caenorhabditis nematodes, as crucial controlling components of Wnt and sex determination signaling are absent in these species. In this respect, I identified female-specific expression of potential polarity associated genes during gonad development and oogenesis in the Enoplean nematode Romanomermis culicivorax. I could show that known downstream components of the polarity complexes PAR-3/-6/PKC-3 and PAR-1/-2 are absent in non-Caenorhabditis species. Even PAR-2 as part of the polarity complex does not exist in these nematodes. Instead, transcriptomes of nematodes (including C. elegans), show expression of other polarity-associated complexes such as the Lgl (Lethal giant larvae) complex. This result could pose an alternative route for nematodes and nematomorphs to initiate polarity during early embryogenesis. I could show that crucial pathways of axis specification, such as Wnt and BMP are very different in C. elegans compared to other nematodes. In the former, Wnt signaling, for instance, is mediated by four paralogous beta-catenins, while other Chromadorea have fewer and Enoplea only one beta-catenin. The transcriptomes of R. culicivorax and the nematomorph show that regulators of BMP (e.g. Chordin), are specifically expressed during early embryogenesis only in Enoplea and the close outgroup of nematomorphs. In conclusion, my results demonstrate that the molecular machinery controlling oogenesis and embryogenesis in nematodes is unexpectedly variable and C. elegans cannot be taken as a general model for nematode development. Under this perspective, Enoplean nematodes show more similarities with outgroups than with C. elegans. It appears that certain pathway components were lost or gained during evolution and others adopted new functions. Based on my findings I can conjecture, which pathway components may be ancestral and which were newly acquired in the course of nematode evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the mostly unknown herpetofauna in Hin Nam No National Protected Area Laos in the northern Truong Son Range was for the first time intensively investigated, and its diversity was compared to the bordering, and well-investigated Phong Nha - Ke Bang National Park in Vietnam. Twelve new vertebrate species were described comprising 11 geckonids (Cyrtodactylus bansocensis, C. calamei, C. hinnamnoensis, C. jaegeri, C. rufford, C. sommerladi, C. soudthichaki, Gekko boehmei, G. bonkowskii, G. sengchanthavongi, G. thakhekensis, Lycodon banksi and one colubrid snake (Lycodon banksi). Seven species were discovered for the first time in Laos including three frogs (Gracixalus quyeti, G. supercornutus, Rhacophorus maximus), two geckos (Cyrtodactylus cryptus, C. pseudoquadrivirgatus) and two snakes (Lycodon futsingensis, L. ruhstrati abditus). The main hypothesis that the Truong Son Range acted as a biogeographic barrier for the distribution of amphibians and reptiles could be confirmed at least for karst adapted gekkonids. Compared to other herpetofaunal groups the number of gekkonids in karst formations was particularly high (seven bent-toed geckos, four true geckos). By comparing the relative amounts of shared species in Hin Nam No and Phong Nha - Ke Bang, it is interesting to note that fewer reptile species (38%) than amphibian species (66%) were shared between both regions. This might indicate that the Truong Son Range acts as a stronger biogeographical barrier for reptiles than for amphibians. Two pairs of karst-adapted cryptic gecko species (i.e. species with distinct genetic differences, but a similar phenotype) occurred on both sides of the Truong Son Range. Only in one case these were sibling species (Crytodactylus sommerladi in Laos versus C. roesleri in Vietnam), but not in the other (C. hinnamnoensis in Laos versus C. phongnhakebangensis in Vietnam). On the Laotian side, nine gecko species (Cyrtodactylus bansocensis, C. calamei, C. darevskii, C. hinnamnoensis, C. khammouanensis, C. multiporus, C. sommerladi, G. boehmei, G. sengchanthavongi) currently have to be regarded as endemic to the Hin Nam No region. On the Vietnamese side, seven species including two bent-toed geckos (Cyrtodactylus phongnhakebangensis and C. roesleri), three skinks (Lygosoma boehmei, Sphenomorphus tetradactylus and Tropidophorus noggei), and two snakes (Hebius andreae and Boiga bourreti) are currently only known from Phong Nha - Ke Bang and adjacent regions. These high numbers of potential endemic species together with the cryptic species complex in Cyrtodactylus provide strong evidence that the karst formations in the northern Truong Son Range represent a hot spot of reptile diversity and of speciation in Crytodactylus in particular. Correct species identification is a fundamental requirement for conservation measures. The discovery of cryptic species complexes poses a challenge for alpha taxonomy and species conservation, because the true distribution ranges of the species are in fact much smaller than previously assumed. Species conservation in this area of Laos is facing a number of further problems. New and potentially endemic species were discovered in highly populated and disturbed areas. Conversion of the Ho Chi Minh Trail into a highway provided easy access for farmers and still continues to accelerate the destruction of remote forest areas. Southern Hin Nam No with its high diversity of endemic species was identified as the first priority area for conservation. Also Ban Soc, an area isolated from Hin Nam No, should be among the conservation priorities because this region houses a so far overlooked population of the critically endangered Siamese crocodile. Efforts to establish a legal conservation status for this habitat are in progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue mechanics and cellular interactions influence every single cell in our bodies to drive morphogenesis. However, little is known about mechanisms by which cells sense physical forces and transduce them from the cytoskeleton to the nucleus to control gene expression and stem cell fate. We have identified a novel nuclear-mechanosensor complex, consisting of the nuclear membrane protein emerin (Emd), actin and non-muscle myosin IIA (NMIIA), that regulates transcription, chromatin remodeling and lineage commitment. Force-induced enrichment of Emd at the outer nuclear membrane leads to a compensation between H3K9me2,3 and H3K27me3 on constitutive heterochromatin. This strain-induced epigenetic switch is accompanied by the global rearrangement of chromatin. In parallel, forces promote local F-actin polymerization at the outer nuclear membrane, which limits the availability of nuclear G-actin. Subsequently, the reduction of nuclear G-actin results in attenuated global transcription and therefore increased H3K27me3 occupancy to reinforce gene silencing. Restoring nuclear actin levels in the presence of mechanical strain counteracts PRC2-mediated silencing of transcribed genes. This mechanosensory circuit is also observed in vivo. Depletion of NMIIA in mouse epidermis leads to decreased H3K27me3 levels and precocious lineage commitment, thus abrogating organ growth and patterning. Our results reveal how mechanical signals regulate nuclear architecture, chromatin organization and transcription to control cell fate decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salt stress is known to have severe effects on plant health and fecundity, and mitochondria are known to be an essential part of the plant salt stress response. Arabidopsis thaliana serves as an excellent model to study the effects of salt stress as well as mitochondrial morphology. Arabidopsis contains several homologues to known mitochondrial proteins, including the fission protein FIS1A, and FMT, a homologue of the CLU subfamily. We sought to examine the effects of salt stress on knockout lines of FIS1A and FMT, as well as a transgenic line overexpressing FMT (FMT-OE) in columella cells in the root cap of Arabidopsis. fmt mutants displayed defects in both root and leaf growth, as well as a delay in flowering time. These mutants also showed a pronounced increase in mitochondrial clustering and number. FMT-OE mutants displayed severe defects in germination, including a decrease in total germination, and an increase in the number of days to germination. fis1A mutants exhibited shorter roots and slightly shorter leaves, as well as a tendency towards random mitochondrial clustering in root cells. Salt stress was shown to affect various mitochondrial parameters, including an increase in mitochondrial number and clustering, as well as a decrease in mitochondrial area. These results reveal a previously unknown role for FMT in germination and flowering in Arabidopsis, as well as insight into the effects of salt stress on mitochondrial morphology. FMT, along with FIS1A, may also help to regulate mitochondrial number and clustering, as well as root and leaf growth, under both control and salt-stressed conditions. This has implications for both FMT and FIS1A in whole-plant morphology as well as the plant salt stress response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic genomes contain repetitive DNA sequences. This includes simple repeats and more complex transposable elements (TEs). Many TEs reach high copy numbers in the host genome, owing to their amplification abilities by specific mechanisms. There is growing evidence that TEs contribute to gene transcriptional regulation. However, excess of TE activity may lead to reduced genome stability. Therefore, TEs are suppressed by the transcriptional gene silencing machinery via specific chromatin modifications. In contrary, effectiveness of the epigenetic silencing mechanisms imposes risk for TE survival in the host genome. Therefore, TEs may have evolved specific strategies for bypassing epigenetic control and allowing the emergence of new TE copies. Recent studies suggested that the epigenetic silencing can be, at least transiently, attenuated by heat stress in A. thaliana. Heat stress induced strong transcriptional activation of COPIA78 family LTR-retrotransposons named ONSEN, and even their transposition in mutants deficient in siRNA-biogenesis. ONSEN transcriptional activation was facilitated by the presence of heat responsive elements (HREs) within the long terminal repeats, which serve as a binding platform for the HEAT SHOCK FACTORs (HSFs). This thesis focused on the evolution of ONSEN heat responsiveness in Brassicaceae. By using whole-transcriptome sequencing approach, multiple Arabidopsis lyrata ONSENs with conserved heat response were found and together with ONSENs from other Brassicaceae were used to reconstruct the evolution of ONSEN HREs. This indicated ancestral situation with two, in palindrome organized, HSF binding motifs. In the genera Arabidopsis and Ballantinia, a local duplication of this locus increased number of HSF binding motifs to four, forming a high-efficiency HRE. In addition, whole transcriptome analysis revealed novel heat-responsive TE families COPIA20, COPIA37 and HATE. Notably, HATE represents so far unknown COPIA family which occurs in several Brassicaceae species but is absent in A. thaliana. Putative HREs were identified within the LTRs of COPIA20, COPIA37 and HATE of A. lyrata, and could be preliminarily validated by transcriptional analysis upon heat induction in subsequent survey of Brassicaeae species. Subsequent phylogenetic analysis indicated a repeated evolution of heat responsiveness within Brassicaceae COPIA LTR-retrotransposons. This indicates that acquisition of heat responsiveness may represent a successful strategy for survival of TEs within the host genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In den letzten 30 Jahren hat sich die Positronen Emissions Tomographie (PET) zu einem der wichtigsten Instrumente in der klinischen Diagnostik entwickelt. Neben den ständigen technischen Verbesserungen verdankt die PET ihren klinischen Stellenwert vor allem dem ihr inhärenten Potenzial, physiologische und biochemische Prozesse auf molekularer Ebene und in Echtzeit darzustellen. Aufgrund der wachsenden Zahl neuer und krankheitsspezifischer Radiotracer nimmt sie auch auf dem Gebiet der Wirkstoffentwicklung sowie beim Monitoring von pharmakologischen Interventionen eine immer wichtigere Rolle ein. Grundlegend hierfür ist einerseits das intelligente Design innovativer und selektiver molekularer Sonden mit der Fähigkeit zur Visualisierung molekularer Targets, die in physiologischen und pathophysiologischen Prozessen involviert sind und andererseits die Entwicklung der dafür notwendigen fortschrittlichen Markierungsstrategien. Letzteres ist zentraler Bestandteil der radiochemischen Grundlagenforschung und Hauptgegenstand dieser kumulativen Promotionsarbeit, in dessen Rahmen ein neues „minimalistisches“ Protokoll zur Radiofluorierung ausgearbeitet wurde. Die Entwicklung der sog. „minimalistische“ Methode ermöglicht eine vereinfachte und zeitsparende Herstellung von unterschiedlichsten 18F-markierten Verbindungen, da sie weder der azeotropen Trocknung noch des Zusatzes einer Base oder anderer Additive bedarf. Das neue Radiomarkierungsverfahren umfasst eine direkte Elution von 18F- mittels alkoholischer Lösung der Ammonium-, Diaryliodonium- oder Triarylsulfoniumsalz Vorläufern. Nach Entfernung des Alkohols wird das resultierende [18F]Fluoridsalz in einem geeigneten Lösungsmittel erhitzt. Die hohe Effizienz der auf der „minimalistischen“ Methode basierenden Synthese bietet somit auch einen schnellen Zugang zu 18F-markierten Fluorbenzaldehyden ([18F]FBAs) in großen Aktivitätsmengen, was einen entscheidenden Vorteil für die Entwicklung neuer Markierungsmethoden mit Hilfe dieses Radiomarkierungsbausteins darstellt. Darauf aufbauend wurde, ausgehend von [18F]FBA, auf der Basis der Seyferth-Gilbert Homologisierung, ein innovatives Verfahren zur Synthese von bisher unbekannten 18F-markierten Fluorarylacetylenen entwickelt. Hierdurch konnten über Cycloadditions- und Kreuzkupplungsreaktionen unterschiedliche radiomarkierte Modellverbindungen sowie PET-Tracer hergestellt und somit die Vielseitigkeit der neuen radiomarkierten Synthone aufgezeigt werden. Die durch die „minimalistische“ Methode gesteigerte Effizienz der Synthese von [18F]FBA ermöglicht es ebenfalls, den bereits in der Literatur bekannten Markierungsbaustein C-(4-[18F]Fluorphenyl)-N-phenylnitron [18F]FPPN in ausreichenden Mengen zu produzieren und für die zielgerichtete Synthese diverser radiofluorierter -Lactame über die Kinugasa-Reaktion einzusetzen. Mit dem Erhalt der radiofluorierten β-Lactam-Peptid und -Protein-Konjugate in hohen radiochemischen Ausbeuten unter sehr milden Bedingungen, konnte die Eignung der Kinugasa-Reaktion als neues und leistungsstarkes Radiofluorierungsverfahren eindrucksvoll demonstriert werden. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der erste Teil der Dissertation befasst sich mit einem Forschungsprojekt zum Thema Paläobiogeographie der Steinfliegen des Baltischen Bernsteins. Nach einer Untersuchung von über 200 Steinfliegeninklusen des 40-50 Millionen Jahre alten Baltischen Bernsteins konnten vier Neubeschreibungen zu den bisher existierenden 14 hinzugefügt werden. Bei einem Vergleich der Verbreitungshistorie rezenter Gattungen wurden auf der Basis des Aktualitätsprinzips mögliche Verbreitungsrouten der Steinfliegengattungen des Baltischen Bernsteins über die kreidezeitliche Bering Landbrücke aufgestellt. Ausgewählte Aspekte des Forschungsprojekts stellten im zweiten, didaktischen Teil der Dissertation die Basis eines für die Mittelstufe entwickelten Projektes zum Thema Bernstein und seine Inklusen dar. Das Bernsteinprojekt wurde am zdi-Schülerlabor der Universität zu Köln mit mehrern Schulklassen durchgeführt und auf der Basis der im Vorfeld formulierten Forschungsfragen formativ evaluiert.